Soc3811 Third Midterm Exam

SEMI-OPEN NOTE:

One sheet of paper, signed
\& turned in with exam booklet
Bring Your Own Pencil with Eraser and a Hand Calculator!

Prediction with a regression equation

Use a regression equation to estimate the scores on the dependent variable for different values of the independent variable(s)

Prediction the midterm scores (Y) from number of beers consumed the night before the test (X)

$$
\hat{Y}_{\mathrm{i}}=93-4.8 \mathrm{X}_{\mathrm{i}}
$$

t-tests for Hypotheses about β

Bivariate \& multivariate regression use the same ttest for hypotheses about the linear effect of an independent variable on the dependent variable.

Two-tailed hypothesis pair:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{\mathrm{j}}=0 \\
& \mathrm{H}_{1}: \beta_{\mathrm{j}} \neq 0
\end{aligned}
$$

One-tailed hypothesis pair:

$$
\begin{aligned}
& \mathrm{H}_{0}: \beta_{\mathrm{j}} \leq 0 \\
& \mathrm{H}_{1}: \beta_{\mathrm{j}}>0
\end{aligned}
$$

t-test where b_{j} is the sample regression coefficient \& denominator is the standard error of the sampling distribution of β_{j}

$$
\mathrm{t}_{\mathrm{N}-\mathrm{K}-1}=\frac{\mathrm{b}_{\mathrm{j}}-\beta_{\mathrm{j}}}{\mathrm{~s}_{\mathrm{b}_{\mathrm{j}}}}
$$

t-test for regression slope

Test a hypothesis about the population regression slope (β), using the sample estimate of the standard error for $b_{X x}$
Conduct a one-tail hypothesis test:

$$
\mathrm{H}_{0}: \beta_{\mathrm{YX}} \geq 0
$$

Estimate the regression equation (s_{b} in parentheses):

$$
\mathrm{H}_{1}: \beta_{\mathrm{YX}}<0
$$

$$
\begin{array}{rll|l|l|l|}
\hat{\mathrm{Y}}_{\mathrm{i}}=14.36-4.83 \mathrm{X}_{\mathrm{i}} \\
(2.38) & (2.34) & \mathrm{R}_{\mathrm{YX}}^{2}=0.26 \\
\mathrm{t}=\frac{\mathrm{b}_{\mathrm{YX}}-\beta_{\mathrm{YX}}}{\mathrm{~s}_{\mathrm{b}}}= & & \alpha & \text { 1-tail } & \text { 2-tail } \\
\hline
\end{array}
$$

Decision: \qquad Prob. of Type 1 error: \qquad
Conclusion:

More Examples

State two-tail hypothesis tests: $\quad \mathrm{H}_{0}: \beta_{\mathrm{YX}}=0$
$\mathrm{H}_{1}: \beta_{\mathrm{YX}} \neq 0$
Estimate eq.

$$
\begin{array}{rlll}
\hat{\mathrm{Y}}_{\mathrm{i}}=-3.59 & -6.27 \mathrm{X}_{1 \mathrm{i}} & +2.84 \mathrm{X}_{2 \mathrm{i}} & \mathrm{R}_{\mathrm{YX}}^{2}=0.13 \\
& (1.48) & (3.89) & (0.90)
\end{array}
$$

Calculate $1^{\text {st }}$ t-test for β_{1} :

$$
\mathrm{t}=\frac{\mathrm{b}_{1}-\beta_{1}}{\mathrm{~s}_{\mathrm{b} 1}}=
$$

Decision: \qquad Prob. of Type I error: \qquad

Calculate $2^{\text {nd }}$ t-test
for β_{2} :
Decision: \qquad Prob. of Type I error:

Conclusions:

Calculate Coefficient of Determination $\left(\mathrm{R}^{2}\right)$

Use ratios of sums of squares to calculate the coefficient of determination, a proportional measure of the variance in Y predicted by its linear relationship with X

$$
\mathbf{R}_{\mathbf{Y X}}^{2}=\frac{\mathbf{S S}_{\text {TOTAL }}-\mathbf{S S}_{\mathbf{E R R O R}}}{\mathbf{S S}_{\mathbf{T O T A L}}}=\frac{\mathbf{S S}_{\text {REGRESSION }}}{\mathbf{S S}_{\text {TOTAL }}}
$$

Find R-square for regression of new Florida votes for George Bush on the number of "pregnant chads"

Mean Squares

In bivariate regression, calculate the mean (average) sums of squares per degree of freedom, for the three components in R-square

$$
\begin{aligned}
\frac{\mathrm{SS}_{\mathrm{TOTAL}}}{N-1} & =\frac{\mathrm{SS}_{\mathrm{REGRESSION}}}{1}+\frac{\mathrm{SS}_{\mathrm{ERROR}}}{N-2} \\
& =\mathrm{MS}_{\text {REGRESSION }}+\mathrm{MS}_{\mathrm{ERROR}}
\end{aligned}
$$

The ratio of these two mean squares is the F-statistic with 1 and $\mathbf{N}-2$ degrees of freedom:

$$
\mathrm{F}_{1, \mathrm{~N}-2}=\frac{\mathrm{M} \mathrm{~S}_{\mathrm{REGRESSION}}}{\mathrm{MS}_{\mathrm{ERROR}}}
$$

Test Hypothesis about ρ^{2}

In the population, does the linear relationship of the variables statistically "explain" some nonzero proportion of the variation in the dependent variable. In other words, is Rho-square greater than 0?

$$
\begin{array}{ll}
\mathbf{H}_{\mathrm{O}}: \rho_{\mathrm{YX}}^{2}=\mathbf{O} & \hat{\mathrm{Y}}=13.75+0.76 \mathrm{X} \\
\mathbf{H}_{1}: \rho_{\mathrm{YX}}^{2}>\mathbf{O} & \mathrm{R}^{2}=0.019 \quad \mathrm{~N}=200
\end{array}
$$

$$
\begin{array}{rr}
\text { SS }_{\text {REGRESSION }}= & 63 \\
\text { SS }_{\text {ERROR }}=3,253 \\
\text { SS }_{\text {TOTAL }}=3,316 \\
\hline
\end{array}
$$

How many dffor F ?

ANOVA table and F-test

Use sums of squares and degrees of freedom in the summary ANOVA table to compute the F-ratio to test H_{0} :

Source	SS	df	MS	F
Regression	$\mathbf{6 3}$			
Error	$\mathbf{3 , 2 5 3}$			
Total	3,316		------------------	

α	df $_{\text {R }}$, df $_{E}$	c.v.
.05	$1, \infty$	3.84
.01	$1, \infty$	6.63
.001	$1, \infty$	10.83

Decision:
Probability of Type I error:

Conclusion:

F-test for Multiple \mathbf{R}^{2}

In the test of $\boldsymbol{\rho}^{\mathbf{2}}$ for multiple regression, the degrees for freedom for $\mathbf{S S}_{\text {Regression }}=\mathbf{k}$ and for SS $_{\text {ERROR }}=\mathbf{N}$-k-1
Test the null hypothesis for these data from an equation with four independent variables and sample $\mathbf{N}=151$:

Conclusion:

Difference in ρ^{2} for Nested Equations

Use F-test to decide whether adding predictors to a second, nested
regression equation increases $\rho^{2}: \quad H_{1}: \rho_{2}^{2}-\rho_{1}^{2}>0$ where subscripts " 1 " and " 2 " refer to the equations with fewer and more predictors, respectively

The F-statistic tests the increase in sample R-squares relative to the difference in the two equations' df:

$$
\mathbf{F}_{\left(\mathbf{K}_{2}-\mathbf{K}_{1}\right),\left(\mathbf{N}-\mathbf{K}_{2}-1\right)}=\frac{\left(\mathbf{R}_{2}^{2}-\mathbf{R}_{1}^{2}\right) /\left(\mathbf{K}_{2}-\mathbf{K}_{1}\right)}{\left(1-\mathbf{R}_{2}^{2}\right) /\left(\mathbf{N}-\mathbf{K}_{2}-1\right)}
$$

Test Difference in ρ^{2} of 2 Equations

A regression equation predicting test scores has $\mathrm{R}^{2}=$ 0.14 with five predictors; after adding two predictors to that equation, the \mathbf{R}^{2} increases to 0.17 . Sample $\mathbf{N}=300$.

$$
\begin{aligned}
& H_{0}: \rho_{2}^{2}-\rho_{1}^{2}=0 \\
& H_{1}: \rho_{2}^{2}-\rho_{1}^{2}>0
\end{aligned}
$$

$$
\mathbf{F}_{(7-5),(300-7-1)}=\frac{\left(\mathbf{R}_{2}^{2}-\mathbf{R}_{1}^{2}\right) /\left(\mathbf{K}_{2}-\mathbf{K}_{1}\right)}{\left(1-\mathbf{R}_{2}^{2}\right) /\left(\mathbf{N}-\mathbf{K}_{2}-1\right)}=
$$

α	df $_{R}, \mathrm{df}_{\mathrm{E}}$	c.v.
.05	$2, \infty$	3.00
.01	$2, \infty$	4.61
.001	$2, \infty$	6.91

Decision: \qquad Prob. Type I error: \qquad
Conclusion:

Adjust Multiple R^{2} for $d f$

For multiple regression, adjust $\mathbf{R}^{\mathbf{2}}$ by a degree of freedom for each of the \boldsymbol{K} predictors:

$$
\mathbf{R}_{\mathrm{adj}}^{2}=\mathbf{R}^{2}-\left(\frac{(\mathbf{K})\left(1-\mathbf{R}^{2}\right)}{(\mathbf{N}-\mathbf{K}-1)}\right)
$$

Assuming $\mathrm{N}=500$, what are the adjusted R^{2} ?

Eq:	\mathbf{R}^{2}	\mathbf{K}	Adj. \mathbf{R}^{2}
A:	0.083	3	
B:	0.145	5	
C:	0.372	11	

Standardize Multiple Regression b's

To compare effects of different predictors on a dependent variable, change each binto β^{*} by multiplying b by the ratio of two standard deviations:

$$
\boldsymbol{\beta}_{\mathrm{YX}_{\mathrm{i}}}^{*}=\mathbf{b}_{\mathbf{Y x}_{\mathrm{i}}}\left(\frac{\mathbf{s}_{\mathbf{x}_{\mathbf{i}}}}{\mathbf{s}_{\mathbf{Y}}}\right) \Rightarrow \hat{\mathbf{Z}}_{\mathbf{Y}}=\boldsymbol{\beta}_{1}^{*} \mathbf{Z}_{1}+\boldsymbol{\beta}_{2}^{*} \mathbf{Z}_{2}+\ldots+\boldsymbol{\beta}_{\mathrm{K}}^{*} \mathbf{Z}_{\mathbf{K}}
$$

Variable	Std. dev.	$\hat{\mathrm{Y}}=13.75+0.76 \mathrm{X}_{1}-1.24 \mathrm{X}_{2}+2.83 \mathrm{X}_{3}$ Y
X_{1}	20	$\hat{Z}_{Y}=$
X_{2}	10	

Categories into Dummies Variables

Change REGION into 4 dummy (0-1) predictor variables:

REGION	NORTH	SOUTH	EAST	WEST
1. North				
2. South				
3. East				
4. West				

Use 3 of 4 region dummies in equation \& predict scores:

$$
\begin{align*}
& \hat{\mathbf{Y}}_{\mathbf{i}}=43+58.5 \mathbf{D}_{\text {NORTH }}+22.2 \mathbf{D}_{\text {SOUTH }}-6.8 \mathbf{D}_{\text {EAST }} \\
& \begin{array}{llll}
\text { (8.3) }(7.6) & (4.2) & (2.4) & \mathbf{R}_{\mathrm{adj}}^{2}=0.225
\end{array} \tag{2.4}
\end{align*}
$$

North: $\hat{Y}_{\dot{d}}=43+58.5\left(_\right)+22.2\left(_\right)-6.8\left(_\right)=$ \qquad
South:
$Y_{i}=43+58.5\left(_\right)+22.2($ \square 6.8 \square
 \qquad
East: $\quad Y_{i}=43+58.5(\ldots)+22.2(\ldots)-6.8(\ldots)=$ \qquad
West:

$$
\hat{Y}_{i}=43+58.5(
$$

\qquad $)+22.2($ \square) $-6.8($ \qquad

ANCOVA

ANCOVA includes both continuous \& dummy variables in a multiple regression equation
$\mathrm{Y}=$ statistics test score

$$
\begin{equation*}
\hat{Y}_{i}=77.2+3.5 X_{i}-6.4 D_{\text {MAJORi } i} \quad R_{a d j}^{2}=0.156 \tag{12.3}
\end{equation*}
$$

X = hours spent studying
D = sociology major (1) or nonmajor (0)

Calculate the expected test scores for Sociology major studying 6 hours:

$$
\hat{Y}_{i}=77.2+3.5\left(_\right)-6.4\left(_\right)=
$$

Nonsoc major studying 4 hours:

$$
\hat{Y}_{i}=77.2+3.5\left(_\right)-6.4\left(_\right)=
$$

