Soc3811 Second Midterm Exam

SEMI-OPEN NOTE:

One sheet of paper, signed

& turned in with exam booklet

Bring Your Own Pencil with Eraser and a Hand Calculator!

Standardized Scores & Probability

If we know the mean and standard deviation of any population, then we can standardize the score of the *i*th case in the population:

$$\mathbf{Z}_{i} = \frac{\mathbf{Y}_{i} - \boldsymbol{\mu}_{Y}}{\boldsymbol{\sigma}_{Y}}$$

If the population has a normal distribution, we can use the known relation between Z scores and areas under the standardized normal curve to find probabilities of different segments.

Use the standardized Z-score table

(Appendix C) to look up the area(s):

(a) from the mean (Z=0) to $\pm Z_i$

(b) from Z_i to $\pm \infty$

Convert Y_i to Z_i in a Population

In a population where $\mu_{\mathbf{Y}} = 15$ and $\sigma_{\mathbf{Y}}^2 = 4$, change these $\mathbf{Y}_{\mathbf{i}}$ scores to $\mathbf{Z}_{\mathbf{i}}$:

Probabilities in the Z-Score Table

Z-score	Area from 0 to Z	Area from Z to ∞
1.50	0.4332	0.0668
2.00	0.4772	0.0228
2.10	0.4821	0.0179
2.20	0.4861	0.0139
2.30	0.4893	0.0107
2.40	0.4918	0.0082
2.50	0.4938	0.062
2.60	0.4953	0.0047
2.70	0.4965	0.0035

A: What is the probability of a Z score between 0 and -2.10?

B: What is the probability of a Z score between -2.10 to -∞?

C: What is the probability of a Z score between +2.60 to $+\infty$?

Sampling distribution mean & std. error

Even if a population is not normally distributed, the Central Limit Theorem assures that, for large *N* samples, the sampling distribution of sample means will approximate a normal distribution, whose mean and standard error have these relations to the population mean and standard deviation:

$$\mu_{\overline{Y}} = \mu_{Y} \qquad \sigma_{\overline{Y}} = \frac{\sigma_{Y}}{\sqrt{N}}$$

For a population with $\mu_{Y} = 38$ and $\sigma_{Y} = 3$, what are the sampling distribution means and standard errors for samples of these size Ns?

Confidence Intervals

Another application of the Central Limit Theorem is to construct a confidence interval, a range of scores around a sample point estimate. If we either know or can estimate the standard error of a sampling distribution, then we can construct <u>95% and/or 99% confidence intervals</u> around the point estimate of any sample statistic (such as a sample mean or proportion). For all the samples of size = N, the population parameter will fall inside the CI – the range of values between lower and upper confidence limits – 95% or 99% of the time, respectively.

 $\overline{Y} \pm (Z_{\alpha/2})(\sigma_{\overline{Y}})$

Upper confidence limit, UCL: $\overline{Y} + (Z_{\alpha/2})(\sigma_{\overline{\mathbf{Y}}})$

Lower confidence limit, LCL:

$$\overline{\mathbf{Y}} - (\mathbf{Z}_{\alpha/2})(\boldsymbol{\sigma}_{\overline{\mathbf{Y}}})$$

Compute & Interpret CIs

A recent poll of 553 consumers finds that their mean optimism about the economy is $\overline{Y} = 68$. If the estimated standard error is $\sigma_{\overline{Y}} = 4$, what are the lower & upper limits of the 95% and 99% CIs?

INTERPRETATIONS: We can be 95% confident that the mean consumer optimism in the population is inside the interval from 60.2 to 75.8. We can be 99% confident that the population's mean consumer optimism falls into the range from 57.7 to 78.3.

Steps in Testing Hypotheses

1. Write the research hypothesis (H_1) & null hypothesis (H_0) in English 2. Restate the hypothesis pair in symbolic form. For two-tailed tests, rearrange to show the expected difference in parameter values:

$$\begin{array}{c} \textbf{H}_{0} \vdots \ \mu_{1} \ \equiv \ \mu_{2} \\ \textbf{H}_{1} \vdots \ \mu_{1} \ \neq \ \mu_{2} \end{array} \qquad \begin{array}{c} \textbf{H}_{0} \vdots \ \mu_{1} \ = \ \mu_{2} \ \equiv \ \textbf{0} \\ \textbf{H}_{1} \vdots \ \mu_{1} \ = \ \mu_{2} \ \neq \ \textbf{0} \end{array}$$

3. Chose an α -level for H₀ (i.e., set the probability of Type I, or false rejection, error). Alternatively, after calculating the t-test (#5), determine the smallest α -level at which you can reject H₀

4. In the normal (Z) table, find critical value(s) (c.v.) of t for the α -level

5. Calculate the <u>*t*-test statistic</u>, using the sample size(s) and standard deviation(s) to estimate the sampling distrbution's standard error

6. Compare this *t*-test statistic to the c.v. to see if it falls into or outside the region(s) of rejection & decide whether to reject H_0 in favor of H_1

7. If you decide to reject the null hypothesis, H_0 , then state the probability that you made a Type I, or false rejection, error ($p = \alpha$)

Useful Formulas

Estimate the standard error using two sample values. For a single sample: For two samples:

$$\hat{\boldsymbol{\sigma}}_{\overline{\mathbf{Y}}} = \sqrt{\mathbf{S}^2 / \mathbf{N}} = \mathbf{S} / \sqrt{\mathbf{N}} \qquad \hat{\boldsymbol{\sigma}}_{(\overline{\mathbf{Y}}_1 - \overline{\mathbf{Y}}_2)} = \sqrt{\mathbf{S}_1^2 / \mathbf{N}_1 + \mathbf{S}_2^2 / \mathbf{N}_2}$$

Use this estimated standard error to compute the *t*-test. For a single sample: For two samples:

$$t = \frac{\overline{\mathbf{Y}} - \boldsymbol{\mu}}{\mathbf{s} / \sqrt{\mathbf{N}}}$$

$$t = \frac{(\overline{\mathbf{Y}}_1 - \overline{\mathbf{Y}}_2) - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)}{\sqrt{\mathbf{s}_1^2 / \mathbf{N}_1 + \mathbf{s}_2^2 / \mathbf{N}_2}}$$

Here are the critical values of *t* for the three conventional regions of rejection:

α (alpha)	One-tail c.v. for <i>t</i>	Two-tail c.v. for <i>t</i>
.05	1.65	± 1.96
.01	2.33	± 2.58
.001	3.07	± 3.29

Write Hypotheses Pairs

To encourage you to invest in the stock market, your broker predicts that the Dow-Jones Industrial Average will rise past 12,000 sometime before the end of this year. Write her research and null hypothesis in both English language and symbolic form:

Test a Null Hypothesis about One Mean

An economist believes that the average tax rebate was more than \$300.

Sample statistics: Mean = \$325; s.d. = \$200; *N* = 400

Write the hypothesis pair:

Set $\alpha = .001$ and find c.v. for *t*-test:

Estimate standard error and the *t*-test:

$$t = \frac{\mathbf{Y} - \boldsymbol{\mu}_{\mathbf{Y}}}{\mathbf{s}_{\mathbf{Y}} / \sqrt{\mathbf{N}}} \qquad \blacksquare$$

Compare *t*-score to c.v., decide H₀:_____

```
What is probability of Type I error?
```

Conclusion:

Test Another One

The mean patient stay in hospital this year differs from last year's 4.5 days.

Sample statistics: Mean = 4.7; s.d. = 1.7; N = 874

Write the hypothesis pair:

Set $\alpha = .05$ and find c.v. for *t*-test:

Estimate standard error and the *t*-test:

$$t = \frac{\mathbf{Y} - \boldsymbol{\mu}_{\mathbf{Y}}}{\mathbf{s}_{\mathbf{Y}} / \sqrt{\mathbf{N}}} \quad \blacksquare$$

Compare *t*-score to c.v., decide H₀:_____

```
What is probability of Type I error?
```

Conclusion: _

Test a Null Hypothesis about a Proportion

More than 80% of UM students graduate within six years.

Sample statistics: p = **0.85;** *N* = **200**

Write the hypothesis pair:

Set $\alpha = .01$ and find c.v. for *t*-test:

Estimate standard error and the *t*-test:

$$t = \frac{p - \rho}{\sqrt{pq / N}} =$$

Compare *t*-score to c.v., decide H₀:_____ What is probability of Type I error? _____

Conclusion: ___

Test a Mean Difference Hypothesis

Students studying for the exam score higher than those who don't.

	Study	None
N	77	53
Mean	93.5	88.2
Variance	174.6	213.2

Decision about null hypothesis: _____

Probability of Type I error: _____

Conclusion: _____

Test a Proportion Difference Hypothesis

Anti-war attitudes differ between Independents and Democrats.

Decision about null hypothesis:

Probability of Type I error:

Conclusion: _____

Test a Paired Means Hypothesis

A family sociologist hypothesizes than husbands and wives differ in the mean number of household decisions they make.

	Wives	Husbands	
Mean	8.8	7.4	
Sample N	238		
S _D	11.0		

Decision about null hypothesis:

Probability of Type I error: _____

Conclusion: