Soc3811 Second Midterm Exam

SEMI-OPEN NOTE:

One sheet of paper, signed
\& turned in with exam booklet
Bring Your Own Pencil with Eraser
and a Hand Calculator!

Standardized Scores \& Probability

If we know the mean and standard deviation of any population, then we can standardize the score of the t case in the population:

$$
Z_{i}=\frac{\mathbf{Y}_{i}-\mu_{Y}}{\sigma_{Y}}
$$

If the population has a normal distribution, we can use the known relation between Z scores and areas under the standardized normal curve to find probabilities of different segments.
Use the standardized Z-score table (Appendix C) to look up the area(s): (a) from the mean $(Z=0)$ to $\pm \mathbf{Z}_{i}$
(b) from Z_{i} to $\pm \infty$

Convert Y_{i} to Z_{i} in a Population

In a population where $\mu_{\mathbf{Y}}=15$ and $\sigma_{\mathbf{Y}}^{2}=4$, change these $\mathbf{Y}_{\mathbf{i}}$ scores to $\mathbf{Z}_{\mathbf{i}}$:
$Y_{i} \quad Z_{i}$

28

18

12

8

Probabilities in the Z-Score Table

Z-score	Area from 0 to Z	Area from Z to ∞
1.50	0.4332	0.0668
\ldots		
2.00	0.4772	0.0228
2.10	0.4821	0.0179
2.20	0.4861	0.0139
2.30	0.4893	0.0107
2.40	0.4918	0.0082
2.50	0.4938	0.062
2.60	0.4953	0.0047
2.70	0.4965	0.0035

A: What is the probability of a Z score between 0 and -2.10 ?

B: What is the probability of a Z score between -2.10 to - $-\infty$?

C: What is the probability of a Z score between +2.60 to $+\infty$?

Sampling distribution mean \& std. error

Even if a population is not normally distributed, the Central Limit Theorem assures that, for large N samples, the sampling distribution of sample means will approximate a normal distribution, whose mean and standard error have these relations to the population mean and standard deviation:

$$
\mu_{\overline{\mathbf{Y}}}=\mu_{\mathbf{Y}} \quad \sigma_{\overline{\mathbf{Y}}}=\frac{\sigma_{\mathbf{Y}}}{\sqrt{\mathbf{N}}}
$$

For a population with $\mu_{Y}=38$ and $\sigma_{Y}=3$, what are the sampling distribution means and standard errors for samples of these size Ns?

$$
\mathbf{N} \quad \mu_{\overline{\mathrm{Y}}} \quad \sigma_{\overline{\mathrm{Y}}}
$$

400

800

Confidence Intervals

Another application of the Central Limit Theorem is to construct a confidence interval, a range of scores around a sample point estimate. If we either know or can estimate the standard error of a sampling distribution, then we can construct 95\% and/or 99\% confidence intervals around the point estimate of any sample statistic (such as a sample mean or proportion). For all the samples of size $=\mathrm{N}$, the population parameter will fall inside the Cl - the range of values between lower and upper confidence limits - 95% or 99% of the time, respectively.

$$
\bar{Y} \pm\left(Z_{\alpha / 2}\right)\left(\sigma_{\bar{Y}}\right)
$$

Upper confidence limit, UCL:

$$
\overline{\mathbf{Y}}+\left(\mathbf{Z}_{\alpha / 2}\right)\left(\boldsymbol{\sigma}_{\overline{\mathbf{Y}}}\right)
$$

Lower confidence limit, LCL:

$$
\overline{\mathbf{Y}}-\left(\mathbf{Z}_{\alpha / 2}\right)\left(\boldsymbol{\sigma}_{\overline{\mathbf{Y}}}\right)
$$

Compute \& Interpret Cls

A recent poll of 553 consumers finds that their mean optimism about the economy is $\overline{\mathrm{Y}}=68$. If the estimated standard error is $\sigma_{\overline{\mathrm{Y}}}=4$, what are the lower \& upper limits of the 95% and 99% CIs?

$$
\begin{gathered}
\overline{\mathbf{Y}} \pm\left(\mathbf{Z}_{\alpha / 2}\right)\left(\sigma_{\overline{\mathbf{Y}}}\right)=68 \pm(1.96)(4) \\
\mathrm{LCL}= \\
\overline{\mathbf{Y}} \pm\left(\mathbf{Z}_{\alpha / 2}\right)\left(\sigma_{\overline{\mathbf{Y}}}\right)=68 \pm(2.58)(4) \\
\mathrm{LCL}= \\
\hline \mathrm{UCL}= \\
\hline
\end{gathered}
$$

INTERPRETATIONS: We can be 95\% confident that the mean consumer optimism in the population is inside the interval from 60.2 to 75.8. We can be 99% confident that the population's mean consumer optimism falls into the range from 57.7 to 78.3 .

Steps in Testing Hypotheses

1. Write the research hypothesis $\left(\mathrm{H}_{1}\right)$ \& null hypothesis $\left(\mathrm{H}_{0}\right)$ in English
2. Restate the hypothesis pair in symbolic form. For two-tailed tests, rearrange to show the expected difference in parameter values:

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2} \\
& H_{1}: \mu_{1} \neq \mu_{2}
\end{aligned} \quad \int \begin{aligned}
& H_{0}: \mu_{1}-\mu_{2}=0 \\
& H_{1}: \mu_{1}-\mu_{2} \neq 0
\end{aligned}
$$

3. Chose an α-level for H_{0} (i.e., set the probability of Type I, or false rejection, error). Alternatively, after calculating the t-test (\#5), determine the smallest α-level at which you can reject H_{0}
4. In the normal (Z) table, find critical value(s) (c.v.) of t for the α-level
5. Calculate the t-test statistic, using the sample size(s) and standard deviation(s) to estimate the sampling distrbution's standard error
6. Compare this t-test statistic to the c.v. to see if it falls into or outside the region(s) of rejection \& decide whether to reject H_{0} in favor of H_{1}
7. If you decide to reject the null hypothesis, H_{0}, then state the probability that you made a Type I, or false rejection, error $(p=\alpha)$

Useful Formulas

Estimate the standard error using two sample values.

For a single sample:

$$
\hat{\sigma}_{\overline{\mathbf{Y}}}=\sqrt{\mathbf{s}^{2} / \mathbf{N}}=\mathbf{s} / \sqrt{\mathbf{N}}
$$

For two samples:

$$
\hat{\boldsymbol{\sigma}}_{\left(\overline{\mathbf{Y}}_{1}-\overline{\mathbf{Y}}_{2}\right)}=\sqrt{\mathbf{s}_{1}^{2} / \mathbf{N}_{1}+\mathbf{s}_{2}^{2} / \mathbf{N}_{2}}
$$

Use this estimated standard error to compute the t-test.
For a single sample:

$$
t=\frac{\overline{\mathbf{Y}}-\boldsymbol{\mu}}{\mathbf{s} / \sqrt{\mathbf{N}}}
$$

For two samples:

$$
t=\frac{\left(\overline{\mathbf{Y}}_{1}-\overline{\mathbf{Y}}_{2}\right)-\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)}{\sqrt{\mathbf{s}_{1}^{2} / \mathbf{N}_{1}+\mathbf{s}_{2}^{2} / \mathbf{N}_{2}}}
$$

Here are the critical values of t for the three conventional regions of rejection:

α (alpha)	One-tail c.v. for \boldsymbol{t}	Two-tail c.v. for \boldsymbol{t}
.05	1.65	± 1.96
.01	2.33	± 2.58
.001	3.07	± 3.29

Write Hypotheses Pairs

To encourage you to invest in the stock market, your broker predicts that the Dow-Jones Industrial Average will rise past 12,000 sometime before the end of this year. Write her research and null hypothesis in both English language and symbolic form:
$H_{0}:$
$H_{1:}$
\qquad
H_{1}

Is this a one-tail or two-tailed test?
Why?

Test a Null Hypothesis about One Mean

An economist believes that the average tax rebate was more than $\$ 300$.
Sample statistics: Mean = \$325; sid. = \$200; $\mathbf{N}=400$
Write the hypothesis pair: \qquad
Set $\alpha=.001$ and find c.v. for t-test:
Estimate standard error and the t-test:

$$
t=\frac{\overline{\mathbf{Y}}-\mu_{\mathbf{Y}}}{\mathbf{s}_{\mathbf{Y}} / \sqrt{\mathbf{N}}}
$$

Compare t-score to civ., decide H_{0} : \qquad
What is probability of Type I error?
Conclusion:

Test Another One

The mean patient stay in hospital this year differs from last year's 4.5 days.
Sample statistics: Mean = 4.7; sid. = 1.7; N=874
Write the hypothesis pair:
$\mathrm{H}_{0} \mathrm{I}$
$\mathrm{H}_{1} \mathrm{I}$

Set $\alpha=.05$ and find c.v. for t-test:
Estimate standard error and the t-test:

$$
t=\frac{\overline{\mathbf{Y}}-\mu_{\mathbf{Y}}}{\mathbf{s}_{\mathbf{Y}} / \sqrt{\mathbf{N}}}=
$$

Compare t-score to civ., decide H_{0} : \qquad
What is probability of Type I error?
Conclusion:

Test a Null Hypothesis about a Proportion

 More than 80% of UM students graduate within six years. Sample statistics: $\mathbf{p = 0 . 8 5 ; ~ N = 2 0 0}$Write the hypothesis pair:

Set $\alpha=.01$ and find c.v. for t-test:
Estimate standard error and the t-test:

$$
t=\frac{p-\rho}{\sqrt{p q / N}}=
$$

Compare t-score to c.v., decide H_{0} : \qquad
What is probability of Type I error?
Conclusion:

Test a Mean Difference Hypothesis

Students studying for the exam score higher than those who don't.

	Study	None
\mathbf{N}	77	53
Mean	93.5	88.2
Variance	174.6	213.2

Decision about null hypothesis: \qquad
Probability of Type I error:

Conclusion:

Test a Proportion Difference Hypothesis

Anti-war attitudes differ between Independents and Democrats.

$\mathbf{H}_{\mathbf{0}}$$H_{1}:$	N	$\begin{aligned} & \text { Inds } \\ & 189 \end{aligned}$	Dems 277
$t=\frac{\left(\mathbf{p}_{\mathbf{I}}-\mathbf{p}_{\mathbf{D}}\right)-\left(\boldsymbol{\rho}_{\mathbf{I}}-\boldsymbol{\rho}_{\mathbf{D}}\right)}{\sqrt{\mathbf{p}_{\mathbf{I}} \mathbf{q}_{\mathbf{I}} / \mathbf{N}_{\mathbf{I}}+\mathbf{p}_{\mathbf{D}} \mathbf{q}_{\mathbf{D}} / \mathbf{N}_{\mathbf{D}}}}$	Prop. p	. 28	. 34
	Prop. q	. 72	. 66
	Prop. 9	. 72	. 66

Decision about null hypothesis: \qquad
Probability of Type I error:
Conclusion:

Test a Paired Means Hypothesis

A family sociologist hypothesizes than husbands and wives differ in the mean number of household decisions they make.

$$
\begin{aligned}
& \mathrm{H}_{\mathbf{\prime}} \\
& t=\frac{\bar{Y}_{D}-\mu_{D}}{s_{D} / \sqrt{N}}
\end{aligned}
$$

	Wives	Husbands
Mean	8.8	7.4
Sample N	238	
S_{D}	11.0	

Decision about null hypothesis:
Probability of Type I error: \qquad
Conclusion:

