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 I. REVIEW OF MULTIPLE REGRESSION 

 

Population Linear Equation: i 1 1i 2 2i K Ki iY  =   +   X  +   X  +  ... +   X  +         

 

Assumptions: BLUE Characteristics (Chapter 8, p. 256-7) 

 

 

 

 

 

 

 

 

 

 

Sample Prediction Equation: i 1 1i 2 2i K KiY  =  a +  b  X  +  b  X  +  ... +  b  X   

 

Estimation Method:            Ordinary Least Squares (Chapter 8, pp. 258-59) 

 

Beta Coefficient Hypothesis: 0 KH :  =  0   

 

b Coefficient Test: 
N-K-1

K K

b

t  =  
b  -  

s K



  

 

Confidence Interval for b: K b /2b   s  tK
    

 

Coefficient of Determination: 

2 REGRESSION

TOTAL

REGRESSION

REGRESSION ERROR

R  =  
SS

SS
 =  

SS

SS  +  SS   

 

R-Square Hypothesis: 0

2
H :  =  0   

 

R-Square Test: 
K, N-K-1

REGRESSION

ERROR

F  =  
SS / K

SS / (N- K-1)   

 

R2 Difference for 2 Eqns: 
(K -K ),(N-K -1)

2
2

1
2

2 1

2
2

2
2 1 2F  =  

(R  -  R ) / (K - K )

(1 -  R ) / (N- K -1)   

1. The relationship of dependent to independent variables is linear & correctly specified. 
2. All variables are measured without error. 
3. Error term properties for single equation: 

Normally distributed 
Expected value (mean) of errors = 0 
Errors independently distributed with constant variances (homoscedasticity) 
Each predictor is uncorrelated with equation’s error term 

4. In systems of interrelated equations, errors are uncorrelated across equations. 
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EXAMPLE: LINEAR REGRESSION WITH INTERACTION 

 

To illustrate OLS multivariate linear regression with Stata using the 2008 

General Social Survey (2008 GSS), I estimate two equations where sexfreq 

(“About how often did you have sex during last 12 months?”) is the 

dependent variable. It’s an seven-category ordered measure from (0) “Not at 

all” to (6) “More than 3 times a week.” I recoded those values into annual 

frequencies (sexfreq2); see below. Three independent variables are age, 

gender, and their interaction. I recoded sex into a 1-0 dummy variable, 

female. Then I computed a variable for the interaction of female and age by 

multiplying those two variables (femage). Thus, in femage, every man’s 

value = 0, while each woman’s value equals her age in years. 

 

The Stata instructions to create the variables used this sequence of dialog 

boxes and this set of command lines: 

 

recode sexfreq (0=0)(1=1.5)(2=12)(3=30)(4=52)(5=130)(6=208), 

generate(sexfreq2) label(sexfreq times per year) 

recode sex (2=1)(1=0), generate(female) 

generate femage=female*age 

codebook sexfreq2 female age femage 

 

The variable descriptive statistics: 

 

summarize sexfreq2 female age femage 
 

Variable |     Obs        Mean    Std. Dev.      Min        Max 

---------+----------------------------------------------------- 

sexfreq2 |    1686    51.64858    61.68792         0        208 

  female |    2023      .54078      .49845         0          1 

     age |    2013    47.7084     17.35084        18         89 

  femage |    2013    25.88276    27.31426         0         89 

---------+----------------------------------------------------- 
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The first OLS regression equation I estimated has only the additive “main 

effects” of age and female. 

 

regress sexfreq2 age female 
 

 
      Source |       SS       df       MS              Number of obs =    1680 

-------------+------------------------------           F(  2,  1677) =  148.92 

       Model |  964467.741     2  482233.871           Prob > F      =  0.0000 

    Residual |  5430331.13  1677  3238.12232           R-squared     =  0.1508 

-------------+------------------------------           Adj R-squared =  0.1498 

       Total |  6394798.87  1679  3808.69498           Root MSE      =  56.905 

 

------------------------------------------------------------------------------ 

    sexfreq2 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         age |  -1.379259    .080797   -17.07   0.000    -1.537733   -1.220786 

      female |  -6.224432   2.786511    -2.23   0.026    -11.68984   -.7590262 

       _cons |   119.5691   4.272797    27.98   0.000     111.1885    127.9497 

------------------------------------------------------------------------------ 

 

The significant negative effect of age indicates that in the population sexual 

activity declines with age. The negative sign for female means that, relative 

to men (the omitted reference category), women have less sexual activity 

than men at all ages (about 6.22 times fewer). Both coefficients are 

statistically significant at p < .05 or less, so we can infer that these effects 

probably occur in the population with only a small chance of Type I error 

(false rejection error).  
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If the predicted scores for each gender are graphed over the respondents’ 

age range, the two lines are parallel.  

 

predict sexmale if female==0 

predict sexfemale if female==1 

twoway (line sexmale age if female==0, lcolor(black) lpattern(dot) 

msymbol(diamond) msize(small)) (line sexfemale age if female==1, 

lcolor(red) lpattern(dot) msymbol(circle) msize(small)), 

ytitle(Predicted Sexfreq2) xtitle(Age of Respondent) legend(order(1 

"Men" 2 "Women")) 

 

In this example, women’s line is -6.22 units below the men: 
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The second OLS regression equation includes the femage interaction term: 

 

regress sexfreq2 age female femage 

 
 
      Source |       SS       df       MS              Number of obs =    1680 

-------------+------------------------------           F(  3,  1676) =  100.40 

       Model |  974157.617     3  324719.206           Prob > F      =  0.0000 

    Residual |  5420641.26  1676  3234.27283           R-squared     =  0.1523 

-------------+------------------------------           Adj R-squared =  0.1508 

       Total |  6394798.87  1679  3808.69498           Root MSE      =  56.871 

 

------------------------------------------------------------------------------ 

    sexfreq2 |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         age |  -1.214335   .1248968    -9.72   0.000    -1.459305   -.9693646 

      female |   6.997664   8.130674     0.86   0.390    -8.949681    22.94501 

      femage |  -.2833732   .1637148    -1.73   0.084    -.6044802    .0377338 

       _cons |    111.916   6.146892    18.21   0.000     99.85963    123.9724 

------------------------------------------------------------------------------ 

 

The female coefficient changed to a positive sign (+7.00, rounded) after 

including its interaction with age (-0.28). Now the two predicted lines are no 

longer parallel: 
 
 

AGEi

AGEAGE

AGEi

AGEAGE

XY

XXFemale

XY

XXMale

50.192.118ˆ

)1(28.0)1(00.7 +21.1 92.111 = Ŷ:

21.192.111ˆ

)0(28.0)0(00.7 +21.1 92.111 = Ŷ:

i

i
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To graph the two lines, recompute the predicted scores for each gender then 

run the twoway program as before:  

 

predict sex_male if female==0 

predict sex_female if female==1 

twoway (line sex_male age if female==0, lcolor(black) lpattern(dot) 

msymbol(diamond) msize(small)) (line sex_female age if female==1, 

lcolor(red) lpattern(dot) msymbol(circle) msize(small)), 

ytitle(Predicted Sexfreq2) xtitle(Age of Respondent) legend(order(1 

"Men" 2 "Women")) 

 

The lines are no longer parallel. Although teenage women are slightly more 

sexually active than men, the rate falls off with age, so the gender gap 

grows increasingly wider. 
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The two OLS regression equations still produce straight line relations of 

sexual activity and age for both genders. We could try other transforms, 

such as adding a squared age component, to see whether a nonlinear 

relation occurs.
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II. LOGISTIC REGRESSION 

 

Multiple regression assumes a normally distributed continuous dependent 

variable, and is generally robust for multi-category ordered variables. If the 

dependent variable is a 1-0 dichotomy, applying the OLS estimation method 

results in the linear probability model. The estimated regression 

coefficients predict the expected proportion of cases in the "1" category.  

 

The extended example below analyzes visart: “How many times did you 

visit an art museum during the last year?” I recode visart into visartd a 

dichotomy with no visits (0) and 1 or more visits (1); to ensure that any very 

frequent visitors were included in the latter category, I used a maximum 

value of 500 for the upper range: 

 

recode visart (0=0)(1/500=1), generate(visartd) label(binary visit art 

museum) 

 

The frequency distribution of visartd: 

 

table visartd 

 
missing .: 519/2023 

----------------------------------------------------------- 

RECODE of visart (how often r visited art museum last year) 

          |      Freq. 

----------+----------- 

        0 |      1,032 

        1 |        472 

----------------------------------------------------------- 

 

Now estimate the OLS regression of visartd on educ (5 Rs had missing 

values): 

 

regress visartd educ 
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Source   |    SS       df     MS          Number of obs =    1501 

-------------+--------------------------  F(  1,  1499) =  275.87 

Model    |   50.23675     1  50.2367      Prob > F      =  0.0000 

Residual |  272.96777  1499    .18209     R-squared     =  0.1554 

-------------+--------------------------  Adj R-squared =  0.1549 

Total    |  323.20453  1500    .21546     Root MSE      =  .42673 

----------------------------------------------------------------- 

visartd  |   Coef.   Std. Err.  t     P>|t|  [95% Conf. Interval] 

---------+------------------------------------------------------- 

educ     |  .060888  .003665   16.61  0.000    .053698   .0680797 

_cons    | -.503488  .050423   -9.99  0.000   -.602389  -.4045757 

----------------------------------------------------------------- 

 

If predicted values are computed, the linear probability model may generate 

expected scores that are less than 0.0 or greater than 1.00, which are 

nonsensical probabilities. 

 

EX: For educ = 6 years: 137.0 = )6(61.0 +5030. = p̂i
   

 

Logistic regression is preferable to the linear probability model because it 

does not require the OLS-BLUE assumption of normally distributed error 

terms in multiple regression.* Logistic regression does not generate 

impossible predicted scores because they are bounded between 0 and 1. 

 

The logit transformation of p is defined as a natural logarithm of ratio of 

two probabilities: 

 






















0

1log
1

ln
p

p

p

p
L e

i

i
i   

 

Logit is also called log-odds. Because p1 + p0 = 1.00, so p1 = 1 - p0 

_____________________________________________________________________ 

* From page 298 in SSDA: 

)bX(aYe

^
YYe

iii

iii



  

 

But, Y has only two values (1 or 0); so at every X-value, an error term can have only two 

scores: 

)bX(a0e

bX(a1e

ii

i)i



  

Hence, the error terms cannot be normally distributed, violating a key assumption in 

OLS regression. Although unbiased, the linear probability model’s coefficients are not 

efficient (i.e., do not have the smallest possible sampling variances). 

_____________________________________________________________________
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The diagram below shows that logit values are symmetrical around p = 0, 

and roughly linear within the range of (.15 < p < .85). However, as 

probability approaches either extreme of its range, the logit grows very 

large or small but never reaches its asymptotic limits of 0 or 1. 

 

EXERCISE: Use your calculator to convert these probabilities into logits: 
 

                p = .05          p = .25          p = .50          p = .75          p = .95 

 

                L = ____       L = ____       L = ____       L = ____       L = ____ 

 

 

 

The Logistic Probability Form

LN(p/(1-p))

6543210-1-2-3-4-5-6

P
r
o
b
(
Y

=
1

)

1.0

.9

.8

.7

.6

.5

.4

.3

.2

.1

0.0

 
 

(SOURCE: SSDA, 4
th

 Ed., Fig. 9.4, p. 300)
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ABOUT LOGARITHMIC TRANSFORMATIONS 
 

Recall from school that using logarithms is a convenient way to do 

multiplication and division by simply adding or subtracting the logs of 

numbers. Contrariwise, taking the anti-log of a logarithm is called 

exponentiation, which restores the original Arabic numerical value with 

which you began. Logs and exponents are VERY important for 

understanding logistic regression and event history analysis. 

 

 EX: For base of 10: 100 X 1,000 = 102 X 103 = 102+3 = 105 = 100,000 

 

                                         First key:        log10 100 + log10 1,000 = 2 + 3 = 5 

 

                                         Second key:  antilog1 0 5 = exp5  = 105 =100,000 

 

Statistics more commonly uses the natural logarithm, which has Napier’s 

constant (e = 2.71828...) as the base. Two symbols for the natural log are "ln 

X" and "loge X". Two notations for exponentiation where Napier’s constant 

is the base are "exp" or just "e". 

 

Some important features of next figure showing N transformed into ln N: 

 

1. Only positive values of N strictly greater than 0 can be changed into 

logarithms; ln 0 is undefined. 

 

2. Values of N between zero and 1 have negative logarithms; as N 

approaches 0, ln N approaches negative infinity at an accelerating 

rate. Despite the figure, the curve never touches the Y-axis (where X = 

0). 

 

3. ln 1 = 0. Because logging and exponentiating are reverse 

operations, taking the log of an exponentiated term cancels that 

operation: ln (eX) = X. Recall that any number taken to the "0th" power 

is 1; for example, 22 = 4, 21 = 2, and 20 = 1. Therefore, e0 = 1. By 

substitution, ln e0 = ln 1. But ln e0 = 0. Therefore, ln 1 = 0. Use your 

calculator to verify these facts. 

 

4. The ln N for values of N greater than 1 are positive and approach 

positive infinity at a decreasing rate. That is, unit changes of ln N are 

smaller as N increases. 
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Natural Log Transformation

POSITIVE NUMBERS

3.702.801.901.00.10
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The diagram below illustrates schematically how the linear and the logistic 

regression lines differ for the same data. The lines very close in the middle-

range of the probability scale (from p = .25 to .75), but depart widely at the 

extreme upper- and lower-ranges. Observe how the logistic regression 

predictions stay within the 0-1 probability bounds, but the linear probability 

model may predict probabilities that are negative or larger than 1.0! 

 

Although the dichotomous dependent variable Y takes only two observed 

values (0 and 1), the expected values (Y
^

)i  calculated from either regression 

equation fall across the full range between 0 and 1. 

 

Linear-Logistic Regression Compared
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ODDS & LOGITS: OBAMA JOB RATINGS 
 

As an exercise, convert these percentages in Presidential job-approval 

polls, all conducted during October, 2010, into odds and logits (log-odds): 
 

POLL* % Approve % Disapprove Odds Logits 

Newsweek 54 40   

ABC/Washington Post 50 45   

AP-GfK 49 50   

McClatchy-Marist RV 48 43   

NBC/Wall Street Journal RV 47 49   

Bloomberg LV 47 48   

Battleground LV 46 51   

CNN/ORC 46 51   

Pew 46 45   

CNN/ORC 45 52   

Ipsos/Reuters 45 51   

NBC/Wall Street Journal RV 45 50   

USA Today/Gallup 45 49   

CBS/New York Times 45 47   

CBS 44 45   

Ipsos/Reuters 43 53   

FOX/OD RV 43 47   

FOX/OD RV 41 50   

 
Variations on “"Do you approve or disapprove of the way President Bush is 
handling his job as president?” Most Ns are 800-1,000 respondents. 
Approve +Disapprove do not sum to 100% due to omitted “don’t know”, “mixed 
feelings”, “not familiar”, “note sure”, etc. responses. 
 
* RV = Registered voters   LV = Likely voters 

 
SOURCE: Polling Report.com 

<http://www.pollingreport.com/obama_job.htm> 
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NATURAL LOGARITHMS 

 

The natural logarithm (ln x), invented by John Napier (1550-1617), is the 

logarithm with base e, where e = 2.718281828…. 

 

The ln x function is referred to as natural because, unlike other logarithms, 

it can be defined using a simple integral or Taylor series. In mathematics, 

expressions with an unknown variable as a function of the exponent e 

occur much more often than exponents of 10 (the “natural” properties of 

the exponential function provide a better description of growth and decay).  

 
The integral of ln x, from x = 1 to x = e is the shaded area under the 

hyperbola y=1/x, which has area = 1 (unit area). ln x is very useful for 

calculus and statistics because its derivative is: 

x
x

xd

d 1
ln 

 

In contrast, the derivatives of logarithms using other bases (b), such as 

base = 10, are more complicated: 
 

    bx
x

xd

d
b

ln

1
ln 

 

 
SOURCES: Wikipedia.org; mathworld.wolfram.com 
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DICHOTOMOUS LOGISTIC REGRESSION 

 

As in OLS regression, a prediction equation for logistic regression 

specifies the expected logit as a linear additive function of one or more 

independent variables:  

 

                                  KiKiii XbXbXbaL  ...ˆ
2211   

 

Anti-logging (exponentiating) both sides of the equation, yields this result 

(the two forms of notation on the right-hand sides are equivalent): 

 

                           )...exp(ˆexp 2211 KiKiii XbXbXbaL   

 

   

KiKii XbXbXba

i

i e
p

p 





























...2211

1
lnexp

 

 

Note that by exponentiating a logarithm, these two inverse operations 

essentially cancel one another, yielding the odds on the left-hand side of 

the equation: 

 

                          

KKXbXbXba

i

i e
p

p 




...2211

1  

 

or, equivalently, where Pr(Y=1) means “probability that Y equals 1”: 

 

 

KK XbXbXba
eeee

Y

Y
2211 ...

)0Pr(

)1Pr(






 

 

Again the two right-hand side expressions are equal; recall that eaeb = ea+b. 

 

Thus, logistic regression coefficients tell how the dependent variable's 

expected log odds change with unit differences in the predictors. More 

below on their interpretation. 
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Estimation Method 

 

OLS techniques, which estimate the unknown population regression 

coefficients by minimizing the sum of squared errors, do not suffice for the 

logistic model. 

 

Instead, statisticians use maximum likelihood estimation (MLE) methods. 

Because no general closed-form solution exists, computer programs for 

MLE use an iterative procedure to generate parameter estimates: 

 

1. Start with an initial set of estimates (e.g., use OLS). 

 

2. Successively revise the parameter estimates, finding new values that 

maximize the joint probability density function (likelihood function) of 

observing the dependent variable values that were actually sampled. 

 

MLE involves maximizing a log-likelihood function, whose core is this 

negative expression: 

 

 



N

i

iY
1

2)( 
  

 

 where Y is the dependent variable and μ is the central tendency of the 

parameter distribution. NOTE: the negative sign produces a parabola 

that opens downward: the 2nd derivative thus identifies the location 

of the parameter's maximum value. 

 

We return below to the log-likelihood function when assessing how well an 

equation "fits" the data. 

 

3. Stop iterating when "peak" values are obtained (i.e., the local maximum), 

as indicated by calculus (the point at which the equation's first derivative 

equals zero). That is, quit when no further increase in the MLE occurs. 
_____________________________________________________________________ 
 

For details on MLE principles and procedures, see Scott R. Eliason. 1993. Maximum 

Likelihood Estimation: Logic & Practice. Newbury Park, CA: Sage Publications. 
_____________________________________________________________________
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Now re-estimate the art museum-education relationship with Stata’s binary 

logistic regression. In Stata, two logistic commands must be submitted to 

produce both sets of output:  

 

logistic visartd educ, coef 
 

Logistic regression                  Number of obs   =       1501 

                                     LR chi2(1)      =     264.19 

                                     Prob > chi2     =     0.0000 

Log likelihood = -801.67728          Pseudo R2       =     0.1415 

----------------------------------------------------------------- 

 visartd |  Coef.     Std. Err.   z   P>|z|  [95% Conf. Interval] 

---------+------------------------------------------------------- 

    educ |   .3552712  .0247871  14.33  0.00    .306689   .403853 

   _cons | -5.726947   .3586061 -15.97  0.00  -6.429802 -5.024092 

----------------------------------------------------------------- 

 

logistic visartd educ 

 
Logistic regression                  Number of obs   =       1501 

                                     LR chi2(1)      =     264.19 

                                     Prob > chi2     =     0.0000 

Log likelihood = -801.67728          Pseudo R2       =     0.1415 

----------------------------------------------------------------- 

visartd | Odds Ratio  Std. Err.   z   P>|z|  [95% Conf. Interval] 

+---------------------------------------------------------------- 

educ    | 1.426567   .0353605   14.33  0.000   1.358919  1.497584 

----------------------------------------------------------------- 

 

Using Stata’s logit command produces the same coefficient output, but 

also this Iteration history, some of which is used below in measuring 

equation fit (page 31):  
 

logit visartd educ 
 

Iteration 0:   log likelihood = -933.77247 

Iteration 1:   log likelihood = -805.81088 

Iteration 2:   log likelihood = -801.68997 

Iteration 3:   log likelihood = -801.67728 

Iteration 4:   log likelihood = -801.67728 
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INTERPRETING LOGISTIC COEFFICIENTS 

 

Effects are nonlinear in the independent and dependent variables, but are 

linear in their logs. 

 

The estimate b = 0.355 means that, for each year of educ, the expected logit 

of attending an art museum increases by 0.355. This number is not at all 

enlightening. Let's calculate some expected logits. For a person with 6 

years of education: 

 

 597.3- = )6(3550. + 727.5- = L̂6   

 

The negative sign shows the expected value favors that person having NOT 

visited an art museum. Why is this interpretation correct? (HINT: What two 

categories form the ratio of probabilities whose ln is taken?) 

Compare this logistic regression prediction to the linear probability model’s 

prediction of –0.137 (see page 8). 

 

For someone with 20 years of schooling: 

 

 373.1+ = )20(3550. + 727.5- = L̂20   

 

The positive sign shows that such persons were more likely to visit than 

not to visit. Again, why? 

 

These two calculations reveal little beyond showing that the log-odds of 

visiting an art museum for the more educated person are expected to be 

much higher than log-odds for the less-educated. The meaning of these 

numerical magnitudes cannot be grasped. What we require is a measuring 

rod with which we are more familiar. So, translate each log-odds into an 

expected probability, using this generic formula: 

 

 Z

Z

i
e

e
p




1
ˆ   

 

where Z is a short notation standing for the entire right-hand side of the 

logistic regression equation: (a + b1X1 + ... + bkXk). 
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Here’s a step-by-step derivation, starting from the definition of the logit 

(page 8) and the logistic regression equation (page 15): 
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Now replace Z in the last equation with the full expression to show the 

expected probability of a category 1 response: 

 

 
KXKbXbXba

KXKbXbXba

e

e
pY 




 ...2211

...2211

1
1

  

 

Why will all three terms always have positive values? Therefore, the 

expected probability that Y = 1 can never be 0 or lower. Because the 

denominator must always be larger than the numerator (again, why?), the 

expected probability can never be 1 or greater. Thus, the probabilities 

predicted by a logistic regression equation are confined inside the range 

between 0 and 1. 
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Next, consider two expected probabilities, obtained by substituting our 

previous example education into the equation: 

 

For a person with educ = 6 years of schooling, the predicted probability is: 

 

)6(355.0727.5

)6(355.0727.5

16Y
e1

e
p









 

 

027.0
0274.01

0274.0

e1

e
p

597.3

597.3

16Y 










  

 

For someone with educ = 20, the expected probability that Y = 1 is: 

 

)20(355.0727.5

)20(355.0727.5

120Y
e1

e
p









 

 

79.0
770.31

770.3

e1

e
p

327.1

327.1

120Y 





  

 

 

Where are these two probability values located on the logistic probability 

curve in the figure on page 9? 
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EXPONENTIATING LOGISTIC REGRESSION B's 

 

A multiplicative transformation of the logistic regression coefficients is also 

insightful. In the column headed “Odds Ratio” Stata displays the 

exponentiated values of the logit coefficient. (Verify on your calculator that 

the transformation of B = 0.355 into Odds Ratio = 1.310 by using the eB key 

on your hand calculator; that is, the inverse of the “LN” key.) An 

exponentiated value reveals the percentage change in the expected odds of 

the dependent variable for a one-unit change in the independent variable. 

This transformation involves exponentiating both sides of the basic logistic 

regression equation. For example, the expected logit equation is: 

 

ii X355.0727.5L̂   

 

Exponentiating both sides (see page 15) gives: 

 

iX
e

p

p 355.0727.5

0

1 


 

 

Finally, plug in educ = 6 years to obtain the expected odds for X: 

 

0274.0597.3)6(355.0727.5

0

1   ee
p

p

 

 

On page 20 we saw that the expected probability of visiting an art museum 

by someone with 6 years of schooling is .027 (more, precisely it’s 

0.0266693). This probability exactly corresponds to the expected odds of (p1 

/ (1 - p1)) = p1 / p0 = (.0266693 / .9733307) = 0.0274, which is exactly what the 

exponentiation above shows.  
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If you exponentiate the estimated B for educ (found in the Coef. column of 

the Stata output on page 17), you obtain the value for educ in the Odds 

Ratio column:  

 

[exp(0.3552712) = 1.4265675]  

 

which shows that the expected odds of a museum visit increases by (1.427 

- 1)(100%) = 42.7% per year of education. 

 

The generic transformation formula is:          (exp(B) - 1)(100%) 

In Stata’s output notation:                     ((Odds Ratio) - 1)(100%) 

 

Equivalently, to apply the exponentiated coefficient to calculate the 

changing odds from one year to the next, simply multiply the preceding 

year's odds by 1.427 to obtain the next year's odds. To illustrate, what is the 

expected odds of visiting an art museum by a person with 7 years of 

schooling? Simply (0.0274)(1.427) = 0.039. For a someone with 8 years: 

(0.039)(1.427) = 0.056, etc. Each successive year of education increases the 

expected odds value by 42.7% across the entire EDUC range from 0 to 20!  

 

Because odds have no upper limit, expected values can increase 

indefinitely (unlike a probability, which is bounded from 0 to 1). Note that, 

as we continue multiplying successive values by any constant amount (e.g., 

by Exp(B)), the cumulative increases compound exponentially. That curve 

is similar to what happens to your bank balance when the interest rate 

remains constant. 

 

The process works in reverse. If a logistic regression b-coefficient has a 

negative sign (e.g., decreasing the log-odds of attendance), then 

exponentiating this coefficient will produce a transformed value less than 1. 

Suppose that e-0.355 = 0.701. Thus, a year of schooling would reduce the 

odds of visiting by (0.701 -1)(100%) = -29.9%. For every additional year of 

educ, the odds would decrease by another –29.9%. 

 

If a predictor has no impact on the dependent variable, its B = 0 and thus e0 

= 1.00. Then (exp(0)-1)(100%) = (1-1)(100%) = 0%. Hence, the expected odds 

of visiting an art museum change by 0.0% as the predictor changes. 

 

In a multiple logistic regression equation, these exponentiated values 

facilitate comparisons of the net effects of several predictors that are 

measured using different scales. 
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LINEAR vs NONLINEAR FORMS of  

LOGISTIC REGRESSION EQUATIONS 

 

The two forms of the logistic regression parameter express an independent 

variable’s effect on one of two measures of the dependent dichotomy, the 

logit or the odds. These measures are functions of one another other, via 

natural logarithm or exponentiation transformation. This section uses the 

museum visit logistic regression equation to illustrate the basic 

equivalence of logistic regression parameters in their additive and 

multiplicative forms.  
 

Here is the additive equation for the expected logit (natural log of the odds): 

 

ii X3550.727.5L̂   

 

Exponentiate both sides, changing it into a multiplicative equation for the 

expected odds. The right-most expression is based on the calculation rule 

for multiplying powers of the same base (e.g., 22+3 = 22 23 = 32):  

 

11 355.0727.53550.727.5

0

1 e
p

p XX
ee


 

 

Now compute the expected logits and odds for some education levels. The 

table below uses the full equations only to compute the initial values (for 

persons with 0 years of educ). For each succeeding year, I changed the 

immediately preceding logit or odds by either the respective additive or 

multiplicative increment. 
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This table shows that (1) the logit changes by a constant amount (linearity 

in the logs); (2) the odds change by a constant proportion (multiplicity in 

the odds; recall that e0.270 = 1.427.) 

 

 

educ ii X3550.727.5L̂   1355.0727.5

0

1

p

p X
ee  

 

0 

 

-5.727 + 0.355(0)  =  -5.727 

e-5.727 = 0.00326 and e0.355 (0) = 1.0: 

     (0.00326)(1.0) =     0.00326 

1                 +0.355  =  -5.372              * (1.427)  =     0.00465 

2                 +0.355  =  -5.017              * (1.427)  =     0.00663 

3                 +0.355  =  -4.662              * (1.427)  =     0.00947 

16                 +0.355  =  -0.047              * (1.427)  =     0.95502 

20                 +0.355  = +1.373              * (1.427)  =     3.95101 

 

Use your calculator to show that the paired values in each row are 

equivalent (i.e., take their antilogs and natural logs, respectively), within 

rounding error. 

 

Graphs of these values on the next page reveal that the logit equation 

forms a straight line while the odds equation forms a nonlinear curve, 

reflecting their parameters’ respective additive and multiplicative 

relationships with educ. Exponentiating the first graph produces the 

second plot; logging the second figure yields the first diagram. 

 

generate logit_visartd = -5.727 + 0.355*educ 

twoway (line logit_visartd educ), ytitle(Value of LOGIT) 

xtitle(Education)  

 

generate odds_visartd = exp(-5.727 + 0.355*educ) 

twoway (line odds_visartd educ), ytitle(Value of ODDS) 

xtitle(Education)  
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This final graph plots both the predicted and observed odds of visiting an 

art museum for each year of educ. I created a small dataset with 21 years of 

educ (from 0 to 20); prodds, the predicted odds from the logistic 

regression; and obsodds, the observed odds calculated as the ratio of 

frequencies in the two categories of visartd (visit divided by novisit). 

 

twoway (line prodds educ) (line obsodds educ), ytitle(Value of 

ODDS) xtitle(Education) legend(order(1 "Predicted" 2 "Observed")) 
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How closely do you think the predicted values fit the observed data? 
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THE CHI-SQUARE TEST STATISTIC 

 

To assess the overall equation fit and, for some programs such as SPSS, 

the significance of individual logistic regression coefficients requires 

familiarity with the “family” of chi-square distributions χ2. As explained in 

SSDA (Section 3.11, pp. 102-104), a specific chi-square distribution is 

constructed from a normally distributed population by drawing a random 

sample of N cases, changing their observed scores into squared 

standardized (Z score) values, then summing them: 

 

 





N

i Y

Yi
N

i

iN

Y
Z

1
2

2

1

22 )(






  

 

Although Z scores range from negative to positive values, the squaring 

eliminates any zero values from the chi-square distribution. In effect, the 

probability density function for a chi-square resembles a sum of N "folded 

over" normal distributions.  

 

Different chi-square distributions result from choosing differing Ns. 

Associated with each chi-square distribution is its degrees of freedom (df), 

symbolized by the Greek letter ν (nu). The df for a given chi-square equals 

N, the number of observations in the sample used to construct that 

distribution. Note my practice of subscripting the χ2 with its df. 

 

The figure on page 28 shows several chi-square distributions with different 

dfs. Note that as df increases, the distribution becomes more symmetrical 

and bell-shaped. The expected value (E(χ2)) for a given chi-square 

distribution is ν, its df. The variance of the distribution is 2ν. Appendix B in 

SSDA#4 (pp. 457-8) displays critical values of chi-square for several 

distributions at conventional α-levels. 
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 If you’re stranded on a desert island without your solar powered 

computer, approximate critical values for large df (N > 100) as: 

 

 
  

 

2

3

 =   1 -  
2

9
 +  Z  

2

9











  
 

 where Zα is the score that puts the entire alpha region into the right 

tail of the standardized normal distribution. 

 

Note that, like the F-ratio, the χ2 region of rejection falls entirely into the 

right-hand tail of the distribution, since the squaring eliminates the negative 

values of Z. On SSDA page 103 we show that F1,ν = t2
ν, which means that, for 

a large N sample, F = Z2. Similarly, because F is the ratio of two chi-squares 

(p. 116), χ2 = Z2. Thus, at α = .05, the critical values for 1

2
 =  3.8414  and F1,∞ = 

3.8414, while the critical values for  /2
2 2

Z  =  ( 1.96)  =  3.8414   

and for  ; /2
2 2

t  =  ( 1.96)  =  3.8414 . These test statistics are all cousins in the 

normal distribution family. 
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Testing the Logistic Regression Estimate of β: 

 

As in OLS linear regression, so in logistic regression with sample data a 

typical null hypothesis is that the parameter (β) is zero in the population. A 

two-tailed research hypothesis is: 

 

 0:

0:

1

0





K

K

H

H





 

 

To help you decide whether to reject the null hypothesis, H0, Stata’s logit 

output displays the t-test statistic and reports the probability of making a 

Type I error (false rejection error) if your reject the null hypothesis in favor 

of the two-tailed alternative, H1. It also calculates the 95% confidence 

interval around the sample point estimate. Here’s the t-test statistic for the 

educ coefficient: 

 

33.14
025.0

0355.0








kb

kk

s

b
t



 

 

which can easily be rejected at p < .001. (Stata’s output truncates the p-

level; it’s not equal to zero but your risk  of making a false rejection 

decision is surely much less than one chance in a thousand). Although the 

Stata labels the column a z-test, it’s identical to a t-test statistic for large 

samples. The convention when reporting results is to call them t-tests. 

 

For some reason, many logistic regression programs (such as SPSS) don’t 

report t-test statistics but instead calculate "Wald statistics." Wald is 

distributed as a chi-square variable with one degree of freedom: 

 

 

2













 


kb
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s

b
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Note that this formula is simply the square of the usual t-test above, 

consistent with the observation on page 28 that χ2 = Z2 = t2 for large N. 
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Regressing visartd on educ would yield a Wald test statistic of 

(0.3552712/0.0247871)2 = 205.4322; its square root is 14.33, which is the t-

test reported on both outputs on page 17. The probability of a false 

rejection error is exceedingly small (p < .001), hence the 2008 GSS sample 

statistic bk is very unlikely to come from a sampling distribution with a 

population parameter of k = 0. Thus, your decision to reject H0 runs only a 

teensy-tiny risk of making a Type I (false-rejection) error. What substantive 

conclusion do you draw about the art museum-education relationship from 

the logistic regression analysis of the 2008 GSS data? 
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MEASURING EQUATION FIT 

 

Several descriptive and inferential statistics are available to assess how 

well a logistic regression equation (model) fits the data. Stata produces 

some of these measures, either as part of the logistic output or via 

additional commands. 

 

 

1. LOG-LIKELIHOOD RATIO 

 

As noted above, ML estimation of the logistic regression parameters 

maximizes the equation's log-likelihood (LL) function. Its numerical value is 

always negative, because the function to be maximized is an inverted 

parabola in hyper-space whose largest value lies below 0 on the vertical 

(dependent variable) axis. Computer packages differ in reporting either this 

negative log-likelihood value, or minus twice the value (-2LL), which has 

distributional properties enabling application of chi-square distributions. 

 

The log-likelihood value is not used in isolation, but always in comparison 

to an alternative equation specification. A pair of multivariate equations are 

said to be nested equations if all the parameters included in the first 

equation also appear in the second equation (i.e., the first is "nested inside" 

the second). The difference in -2LL's for a pair of nested equations tests 

whether the additional parameters specified in the second equation 

improve its fit to the data over the first equation’s fit. We seek to reject the 

null hypothesis that adding predictors to the second equation does not 

reduce the size of the –2LL relative to the difference in degrees of freedom:  

 

H0: (-2LL1) – (-2LL2) = 0 

H1: (-2LL1) – (-2LL2) > 0 
 

The log-likelihood ratio for comparing two nested equations is: 

 

 
   21

2

12 ln2ln2ln2 LL
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where equation 1 is nested inside equation 2. The G2 test statistic is 

distributed as a chi-square value with degrees of freedom equal to the 

difference in the two equations' dfs 2G
df  =  df  -  df

2 1 . Determine the 

appropriate critical value to reject a null hypothesis at your chosen -level 
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(region of rejection). With a large sample size and nested equations 

differing by one df: c.v. χ2 = 3.84 for α = .05; c.v. χ2 = 6.63 for α = .01; and c.v. 

χ
2 = 10.83 for α = .001. 

 

Here are relevant portions of outputs on page 17, where visartd was 

regressed on educ: 

 
Iteration 0:   log likelihood = -933.77247 

Iteration 1:   log likelihood = -805.81088 

Iteration 2:   log likelihood = -801.68997 

Iteration 3:   log likelihood = -801.67728 

Iteration 4:   log likelihood = -801.67728 

 
Logistic regression                  Number of obs   =       1501 

                                     LR chi2(1)      =     264.19 

                                     Prob > chi2     =     0.0000 

Log likelihood = -801.67728          Pseudo R2       =     0.1415 

 

The iteration history reports the initial value of the log likelihood for a 

“constant only” equation that has no independent variables: -933.77. The 

LL at the final iteration step (= -801.68) is for the equation with all predictors 

included. The difference between those LL values is  ((-933.77) - (-801.68)) = 

-132.09). Multiply this difference by -2 to obtain the -2LL test-statistic for a 

pair of nested equations – G2 = (-2)( -132.09) = 264.18 – which appears on 

the Stata output as “LR chi2(1).” Often called the “model chi-square,” this 

G2 has one degree of freedom because the intercept-only model has 1 df 

(for the constant) and the second model has 2 df (the constant plus the K = 

1 predictor, educ).  

 

For this bivariate visit-education logistic regression, what is your decision 

about the null hypothesis? If you set  = .001, what critical value of chi-

square is required to reject the null H0 of no improvement in fit? 

 

We must reject the null hypothesis with a very low probability of Type I 

(false rejection) error. Conclusion: adding the single predictor to the 

equation probably improved the model’s fit in the population data. 

 

 

2. PERCENT OF CASES CORRECTLY CLASSIFIED 

 

OLS regression equations can be used to predict the score of every case, 

which can then be compared to the observed value to see how accurate is 

the prediction. Similarly, logistic regression equation can be used to decide 
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that, if the expected probability is  .50, then predicted score is 0; if the 

expected probability  .50, then predicted value is 1. The percentages of 

correctly predicted cases are then calculated and displayed in a two-by-two 

classification table. If the equation “completely explains” the variation of 

the dependent variable, all cases would fall on the main diagonal, and the 

overall percentage correct would be 100%. That is, all cases predicted to 

equal 0 would be observed 0s, and all predicted 1s would be observed 1s. 

After running a logistic regression, command Stata to produce the 

classification table: 
 

estat classification 
 

Logistic model for visartd 

              -------- True -------- 

Classified |         D            ~D  |      Total 

-----------+--------------------------+----------- 

     +     |       116            72  |        188 

     -     |       355           958  |       1313 

-----------+--------------------------+----------- 

   Total   |       471          1030  |       1501 

                                                  . 

Classified + if predicted Pr(D) >= .5 

True D defined as visartd != 0 

-------------------------------------------------- 

Sensitivity                     Pr( +| D)   24.63% 

Specificity                     Pr( -|~D)   93.01% 

Positive predictive value       Pr( D| +)   61.70% 

Negative predictive value       Pr(~D| -)   72.96% 

-------------------------------------------------- 

False + rate for true ~D        Pr( +|~D)    6.99% 

False - rate for true D         Pr( -| D)   75.37% 

False + rate for classified +   Pr(~D| +)   38.30% 

False - rate for classified -   Pr( D| -)   27.04% 

-------------------------------------------------- 

Correctly classified                        71.55% 

-------------------------------------------------- 

 

At first glance, the example classification table above seems to indicate a 

high level of correct predictions (the main diagonal has 1074 of the 1501 

case = 71.55% correctly classified). However, we could correctly “predict” 

1030/1501 = 68.62% of the cases just by assuming that no one visited an art 

museum last year. Hence, the bivariate logistic regression equation 

produces just a small increment over guessing the most frequent response 

(no visit) for every case.  
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The two sets of four conditional probabilities help to pinpoint where the 

equation does a good and poor job of classifying cases. In this example, 

the low Sensitivity value (116/471 = 24.63%) indicates that the equation 

correctly classified only one-fourth of the respondents who really visited a 

museum. Apparently educ alone doesn’t identify very accurately who goes 

to view pictures at an exhibition! To improve classification accuracy, we 

should consider including additional independent variables in the logistic 

regression equation predicting art museum visitation. Any suggestions? 

 

 

3. GENERALIZED “COEFFICIENTS OF DETERMINATION” 

 

In OLS linear regression, the ratio of the between sum of squares to total 

sum of squares is called the coefficient of determination (R2). It ranges 

between 0.00 and 1.00 and can be interpreted as the proportion of the 

dependent variable’s variance “explained” by the linear combination of the 

independent variables. Further, the sample statistic R2 is used to test the 

null hypothesis that the population parameter ρ2 > 0. Because logistic 

regression uses iterative MLE methods to estimate the equation 

parameters, instead of variance-minimizing OLS methods, it does not 

produce a comparable statistic to indicate model fit to the data. Instead, 

many statisticians have proposed goodness-of-fit measures for logistic 

regression.* Unfortunately, all lack known sampling distributions and thus 

can’t be tested statistically. Furthermore, many of these generalized 

“coefficients of determination” produce differing values for the same data. 

 

Stata’s basic logistic regression output reports a “Pseudo  R2”. For the 

visartd-educ equation above, pseudo-R2 = 0.1415. Knoke et al. (2002:313) 

provide another formula: 

2

2
2

GN

G
Rpseudo




 

 

Applied to the example data, pseudo-R2 = (264.18)/ (1501+264.18) = 0.1497, 

which is close to Stata’s value. 
_____________________________________________________________________ 
 

* Liao, J.G. and Dan McGee. 2003. “Adjusted Coefficients of Determination for Logistic 

Regression.” American Statistician 57:161-165. 

_____________________________________________________________________
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Additional fit statistics are available by running fitstat, a post-estimation 

command that produces scads of fit statistics for many Stata single-

equation regression commands, including: regress, logistic, logit, mlogit, 

poisson, and probit. Written by J. Scott Long and Jeremy Freese, fitstat can 

be found on the Web and installed in your Stata program by using this 

command: 

 

findit fitstat 

 

After installation, run a logistic regression followed by the command: 

 

fitstat 

 
Measures of Fit for logistic of visartd 

Log-Lik Intercept Only: -933.772  Log-Lik Full Model:    -801.677 

D(1499):                1603.355  LR(1):                  264.190 

                                  Prob > LR:                0.000 

McFadden's R2:             0.141  McFadden's Adj R2:        0.139 

Maximum Likelihood R2:     0.161  Cragg & Uhler's R2:       0.227 

McKelvey and Zavoina's R2: 0.257  Efron's R2:               0.174 

Variance of y*:            4.430  Variance of error:        3.290 

Count R2:                  0.716  Adj Count R2:             0.093 

AIC:                       1.071  AIC*n:                 1607.355 

BIC:                   -9360.162  BIC':                  -256.876 

 

Long and Freese (2006:104-113) discuss fitstat methods and formulas.* 

UCLA Academic Technology Services summarizes eight “commonly 

encountered pseudo R-squareds” on its FAQ Webpage.** Neither source 

makes recommendations, although Long and Freese call the Count R2 a 

“seemingly appealing measure.” It is the proportion of correct predictions. 

Adjusted Count R2 “is the proportion of correct guesses beyond the 

number that would be correctly guessed by choosing the largest marginal.” 

 

All measures are descriptive statistics that provide a rough approximation 

for judging a model’s predictive efficacy. No test statistic is available to test 

the null hypothesis that a generalized ρ2 = 0 in the population. 
_____________________________________________________________________ 

 

* Long, J. Scott, & Freese, Jeremy (2006). Regression Models for Categorical Dependent 

Variables Using Stata (Second Edition). College Station, TX: Stata Press. 

 

** UCLA Academic Tech Services. “What are pseudo R-squareds?” 
<http://www.ats.ucla.edu/stat/mult_pkg/faq/general/Psuedo_RSquareds.htm> 

_________________________________________________________________ 

http://www.ats.ucla.edu/stat/mult_pkg/faq/general/Psuedo_RSquareds.htm
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 4. HOSMER-LEMESHOW STATISTIC 

 

The Hosmer-Lemeshow (HL) statistic compares the observed sample 

scores (y) to the probabilities (π) predicted by the logistic regression 

equation. First, the HL program sorts the N cases from the lowest to 

highest predicted probability, then divides them into G groups (quantiles) 

of approximately equal size (if N/G is not an integer, the G groups may differ 

slightly in size). Typically, analysts choose G=10, resulting in 10 deciles. 

Next, within each group, compute the mean predicted probabilities and 

mean observed scores (i.e., the proportion of cases = 1). Finally, the 

program calculates HL as a chi-square test statistic with G-2 degrees of 

freedom: 
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If the probability of the HL statistic is p ≤ .05, we reject the null hypothesis 

of no difference between observed and predicted values of the dependent 

variable. If p > .05, then we fail to reject the null hypothesis of no difference, 

implying that the model’s parameter estimates fit the data at an acceptable 

level. Although the model may not explain a large proportion the dependent 

variable’s variation in the population, it’s probably more than none. 
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To perform the HL test, after running a logistic regression equation, use 

Stata command: 

 
estat gof, group(10) table 

 
Logistic model for visartd, goodness-of-fit test 

  (Table collapsed on quantiles of estimated probabilities) 

  (There are only 8 distinct quantiles because of ties) 

  +--------------------------------------------------------+ 

  | Group |   Prob | Obs_1 | Exp_1 | Obs_0 | Exp_0 | Total | 

  |-------+--------+-------+-------+-------+-------+-------| 

  |     1 | 0.1021 |    11 |  10.0 |   149 | 150.0 |   160 | 

  |     4 | 0.1879 |    72 |  96.4 |   464 | 439.6 |   536 | 

  |     5 | 0.2482 |    35 |  27.8 |    77 |  84.2 |   112 | 

  |     6 | 0.3201 |    66 |  61.5 |   126 | 130.5 |   192 | 

  |     7 | 0.4018 |    35 |  28.1 |    35 |  41.9 |    70 | 

  |-------+--------+-------+-------+-------+-------+-------| 

  |     8 | 0.4893 |   136 | 118.9 |   107 | 124.1 |   243 | 

  |     9 | 0.6610 |    76 |  79.5 |    49 |  45.5 |   125 | 

  |    10 | 0.7987 |    40 |  48.7 |    23 |  14.3 |    63 | 

  +--------------------------------------------------------+ 

       number of observations =      1501 

             number of groups =         8 

      Hosmer-Lemeshow chi2(6) =        25.60 

                  Prob > chi2 =         0.0003 

 

In this example, the program could create only G=8 quantiles because the 

predicted probabilities had many ties (especially in groups #4 and #8), An 

equation with multiple independent variables would be less likely to 

encounter this problem. The HL output indicates that the visartd-educ 

equation does not fit well. 

 

 

 

 

 

 

 

 

 

 

 
_____________________________________________________________________ 

 

* Hosmer, D.W., Jr. & S. Lemeshow. 2000. Applied Logistic Regression. 2d Ed. NY: Wiley. 

_____________________________________________________________________ 
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ANALYZING PREDICTED PROBABILITIES 

 

To examine and display the range of predicted probabilities, first run the 

equation. Then use Stata predict to compute the probability of an art 

museum visit, and store the results in a new variable (predlogit). (Because 

Stata will calculate predicted probabilities of all cases in the 2008 GSS, you 

must include only cases with no missing values.) Next, summarize the 

predicted values and create a Stata dotplot histogram: 

 

logistic visartd educ 

predict predlogit if visartd ~=. 
(option pr assumed; Pr(visartd)) 

(522 missing values generated) 

 

label var predlogit "Logit: Pr(visartd)" 
 

summarize predlogit 
 

Variable |    Obs        Mean    Std. Dev.       Min        Max 

---------+----------------------------------------------------- 

 logitpr |   1501    .3137908    .1917059   .0032464   .7987462 

 

dotplot predlogit, ylabel(0(.2)1) 
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A MULTIVARIATE EXAMPLE: Capital Punishment  

 

Let’s estimate a multivariate logistic regression equation, with several continuous 

and categoric (dummy) independent variables. The 2008 GSS asked: “Do you favor 

or oppose the death penalty for persons convicted of murder?” The responses to 

cappun were “Yes” = 1 and “No” = 2. For independent variables, use educ, polviews, 

region, race, relig.  

 

1. Recode cappun into a 1-0 dichotomy, where 1 = favors capital punishment: 

 

recode cappun (1=1)(2=0), generate(procappun) 

codebook procappun 

 
        range:  [0,1]                        units:  1 

unique values:  2                        missing .:  121/2023 

   tabulation:  Freq.   Numeric  Label 

                 639         0   

                1263         1 

                 121         .   

 

2. Check all frequencies and missing values for educ, polviews, region, race, relig. 

Higher scores in polviews indicate more conservative respondents. The last three 

nonordered discrete measures must be recoded as dummy variables. 

 

3. Create dummy variables and always check the new values and frequencies: 

 

recode region (5/7=1)(nonmiss=0), generate(south) 

recode race (2=1)(nonmiss=0), generate(black) 

recode relig (2=1)(nonmiss=0), generate(catholic) 

codebook educ polviews south black catholic 
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4. Run a logistic regression equation of procappun with five predictors: 
 

logit procappun educ polviews south black catholic 

logistic procappun educ polviews south black catholic, coef 

logistic procappun educ polviews south black catholic 
 

Iteration 0:   log likelihood = -1166.7275   

Iteration 1:   log likelihood =  -1083.954   

Iteration 2:   log likelihood = -1083.0898   

Iteration 3:   log likelihood = -1083.0893   

Iteration 4:   log likelihood = -1083.0893   

 
Logistic regression                               Number of obs   =       1823 

                                                  LR chi2(5)      =     167.28 

                                                  Prob > chi2     =     0.0000 

Log likelihood = -1083.0893                       Pseudo R2       =     0.0717 

 

------------------------------------------------------------------------------ 

   procappun |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        educ |  -.0448776   .0178932    -2.51   0.012    -.0799477   -.0098075 

    polviews |   .3268739   .0376149     8.69   0.000     .2531501    .4005976 

       south |   .1652793   .1123133     1.47   0.141    -.0548507    .3854093 

       black |  -1.160563   .1504345    -7.71   0.000    -1.455409   -.8657162 

    catholic |  -.3480156   .1242622    -2.80   0.005    -.5915649   -.1044662 

       _cons |   .1711663   .3103656     0.55   0.581    -.4371391    .7794717 

------------------------------------------------------------------------------ 

 
------------------------------------------------------------------------------ 

   procappun | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        educ |   .9561145    .017108    -2.51   0.012     .9231646    .9902404 

    polviews |   1.386627   .0521578     8.69   0.000     1.288077    1.492717 

       south |   1.179723   .1324985     1.47   0.141     .9466264    1.470216 

       black |   .3133099   .0471326    -7.71   0.000      .233305    .4207501 

    catholic |   .7060879     .08774    -2.80   0.005     .5534605    .9008052 

------------------------------------------------------------------------------ 

 

5. Run the fit statistics: 

 

fitstat 

 
Measures of Fit for logistic of procappun 

Log-Lik Intercept Only: -1166.727  Log-Lik Full Model:  -1083.089 

D(1817):                 2166.179  LR(5):                 167.276 

                                   Prob > LR:               0.000 

McFadden's R2:              0.072  McFadden's Adj R2:       0.067 

Maximum Likelihood R2:      0.088  Cragg & Uhler's R2:      0.121 

McKelvey and Zavoina's R2:  0.119  Efron's R2:              0.090 

Variance of y*:             3.736  Variance of error:       3.290 

Count R2:                   0.677  Adj Count R2:            0.047 

AIC:                        1.195  AIC*n:                2178.179 

BIC:                   -11476.291  BIC':                 -129.735 
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6. And the HL statistic: 

 
Logistic model for procappun, goodness-of-fit test 

  (Table collapsed on quantiles of estimated probabilities) 

  +--------------------------------------------------------+ 

  | Group |   Prob | Obs_1 | Exp_1 | Obs_0 | Exp_0 | Total | 

  |-------+--------+-------+-------+-------+-------+-------| 

  |     1 | 0.4527 |    77 |  68.7 |   106 | 114.3 |   183 | 

  |     2 | 0.5371 |    85 |  90.1 |    97 |  91.9 |   182 | 

  |     3 | 0.6017 |    94 | 105.5 |    91 |  79.5 |   185 | 

  |     4 | 0.6439 |   119 | 113.6 |    62 |  67.4 |   181 | 

  |     5 | 0.6962 |   114 | 122.2 |    68 |  59.8 |   182 | 

  |-------+--------+-------+-------+-------+-------+-------| 

  |     6 | 0.7191 |   151 | 146.1 |    54 |  58.9 |   205 | 

  |     7 | 0.7513 |   147 | 146.2 |    50 |  50.8 |   197 | 

  |     8 | 0.7878 |   105 | 113.5 |    42 |  33.5 |   147 | 

  |     9 | 0.8312 |   194 | 177.5 |    24 |  40.5 |   218 | 

  |    10 | 0.9097 |   120 | 122.6 |    23 |  20.4 |   143 | 

  +--------------------------------------------------------+ 

 

       number of observations =      1823 

             number of groups =        10 

      Hosmer-Lemeshow chi2(8) =        19.55 

                  Prob > chi2 =         0.0122 

 

What are your substantive interpretations of these results? 
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ANALYZING PREDICTED PROBABILITIES 

 

Use Stata predict to create predicted probabilities (predprob) for every case 

in the multivariate equation: 

 

predict predprob, pr 

 

List these predprob values and the observed values of procappun, using 

only respondents with no missing values. Here are the paired values for the 

first 20 respondents: 

 
      +---------------------+ 

      | predprob   procap~n | 

      |---------------------| 

   1. | .4845967          1 | 

   2. | .6413228          0 | 

   3. |  .434059          0 | 

   4. | .4673772          0 | 

   5. | .2943854          1 | 

      |---------------------| 

   6. | .3212664          1 | 

   7. | .2900129          0 | 

   8. | .3664897          0 | 

   9. | .2121607          1 | 

  10. | .4785634          1 | 

      |---------------------| 

  11. | .2500084          0 | 

  12. | .4482606          0 | 

  13. | .5851597          0 | 

  14. | .4013262          0 | 

  17. | .7562764          1 | 

      |---------------------| 

  18. | .8247694          1 | 

  19. | .3616945          0 | 

  20. | .6279662          0 | 

  21. | .6438503          1 | 

  22. | .7765829          1 | 

      |---------------------| 

 

Although several predictions were good (respondents in yellow), other were 

erroneous (respondents in green ). (Two of the first 20 cases in the survey 

had missing values and were excluded.)  

 

Stata’s adjust command calculates the predicted probabilities for different 

groups, as identified by categories of variable(s). The example below shows 

the predicted procappun of men and women.  
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Caution: By default, the adjust command uses the entire sample, not just 

the selected cases in the preceding logistic regression. Instruct Stata to 

adjust the probabilities by sex only for the sampled cases: 

 

adjust if e(sample), pr by(sex) 

 
---------------------------- 

Respondents sex |         pr 

----------------+----------- 

           male |     .68235 

         female |     .66841 

---------------------------- 

 

Predicted probabilities can be calculated for various combinations of 

attributes. For example, what are the probabilities of supporting capital 

punishment by polviews and gender among southerners with a college 

degree?  

 

adjust south=1 educ=16, pr by(polviews sex) 
 

----------------------------------------------------------------- 

Dependent var: procappun  Equation: procappun   Command: logistic 

   Variables left as is: black, catholic 

Covariates set to value: south = 1, educ = 16 

----------------------------------------------------------------- 

 

----------------------------- 

think of self as     | 

liberal or           | respondents sex  

conservative         |    male   female 

---------------------+----------------- 

   extremely liberal | .409949  .424054 

             liberal | .506429  .505286 

    slightly liberal | .574187  .566406 

            moderate | .659906  .654442 

slghtly conservative | .750288  .739022 

        conservative | .813595  .807876 

extrmly conservative | .846651  .819780 

--------------------------------------- 

 

How does support for capital punishment differ across the polviews 

spectrum? Are the sex differences constant or do they interact with 

polviews? 
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Use both logit and odds forms of the equation to calculate expected values 

for a person who: has 12 years of education, is very conservative (=7), lives 

in the South, and is black and non-Catholic. Show that the two results yield 

identical values.  

 

General forms: 

 

     kk XL̂i    

     ...)(exp)(exp)(exp)(expexp 321

321

1

0

1 XXXXa

p

p
  

 

 

Specific equations (include the exponentiated constant): 

 

CBSPE X35.0X16.1X17.0X33.0X04.017.0L̂i   

 

CBSPE XXXXX

p

p
)71.0()31.0()18.1()39.1()96.0()19.1( 1

0

1   

 

Substitute & solve:  

 

)0(35.0)1(16.1)1(17.0)7(33.0)12(04.017.0L̂i   

 

01.1016.117.031.248.017.0L̂i   

0117121

0

1 )71.0()31.0()18.1()39.1()96.0()19.1(
p

p
 

66.2)0.1)(31.0)(18.1)(0.10)(61.0)(19.1(
0

1 
p

p

 

 

Results are same (discrepancy due to cumulative rounding errors): 

 

0

1
i 66.275.2)01.1exp()L̂exp(

p

p
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STANDARDIZING LOGISTIC COEFFICIENTS 

 
Long and Freese (2006) created a listcoef command, which can be added to 

Stata, that facilitates interpretation of logistic regression coefficients. To locate 

their program, open Stata and enter this command: 

 

findit postado 

 

Click on the link shown in the new window and let Stata install the program 

on your computer. After estimating a logistic regression equation, type: 

 

listcoef, help 

 
logit (N=1823): Factor Change in Odds  

  Odds of: 1 vs 0 

----------------------------------------------------------------- 

 procappun |    b        z     P>|z|    e^b    e^bStdX      SDofX 

-----------+----------------------------------------------------- 

      educ | -0.04488  -2.508  0.012   0.9561   0.8741     2.9977 

  polviews |  0.32687   8.690  0.000   1.3866   1.6025     1.4427 

     south |  0.16528   1.472  0.141   1.1797   1.0828     0.4812 

     black | -1.16056  -7.715  0.000   0.3133   0.6726     0.3418 

  catholic | -0.34802  -2.801  0.005   0.7061   0.8640     0.4201 

----------------------------------------------------------------- 

       b = raw coefficient 

       z = z-score for test of b=0 

   P>|z| = p-value for z-test 

     e^b = exp(b) = factor change in odds for unit increase in X 

 e^bStdX = exp(b*SD of X) = change in odds for SD increase in X 

   SDofX = standard deviation of X 

 

The values in the first four columns are identical to those in the usual 

logistic regression outputs (where the Odds Ratio = e^b; also = exp(b)). The 

coefficients in the fourth column can be interpreted as the effect on the 

odds of the dependent variable Y for a 1-unit difference or change in 

independent variable X. In the fifth column, the effect is expressed as the 

effect on the odds of the dependent variable Y for a 1-standard deviation 

difference or change in independent variable X. (The computation formula 

appears in the table footnotes.) For example, the odds in favor of the death 

penalty are 0.9561 lower per year of education, and 0.8741 lower per 

standard deviation of educ. 
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For a more insightful transformation, change the multiplicative X-

standardized effects above into percentage effects, using the command: 

 

listcoef, percent 

 
logit (N=1823): Percentage Change in Odds  

  Odds of: 1 vs 0 

----------------------------------------------------------------- 

 procappun |      b       z    P>|z|      %      %StdX      SDofX 

-----------+----------------------------------------------------- 

      educ | -0.04488  -2.508  0.012     -4.4    -12.6     2.9977 

  polviews |  0.32687   8.690  0.000     38.7     60.3     1.4427 

     south |  0.16528   1.472  0.141     18.0      8.3     0.4812 

     black | -1.16056  -7.715  0.000    -68.7    -32.7     0.3418 

  catholic | -0.34802  -2.801  0.005    -29.4    -13.6     0.4201 

----------------------------------------------------------------- 

 

The effect of a one-standard deviation difference or change in polviews 

(60.3%) is almost five times as great as the impact of a one-standard 

deviation difference/change in educ (-12.6%), in the opposite direction. 

 

What do the standardized percentage effects reveal about the relative 

impacts of the other predictors on visartd? 
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 MULTINOMIAL LOGISTIC REGRESSION 
 

Logistic regression with a binary (dichotomous) dependent variable is a 

special instance of nonlinear regression involving a multicategory 

dependent variable, the multinomial logistic regression. A multinomial 

model is used when the dependent variables has more than two categories 

that cannot be ranked. For example, workers’ employment statuses might 

be classified as working full-time, working part-time, laid-off, unemployed, 

and not in the labor force. Artificially forcing all observations into an 

employed-unemployed dichotomy could be more concealing than revealing. 

Fortunately, the logistic regression estimation techniques discussed above 

can be extended to analyze M nonordered discrete categories.  

 

I illustrate multinomial logistic regression using the 2008 GSS to analyze 

the respondents’ 2004 Presidential election choices among three 

alternatives: vote for Bush, vote for Kerry, or don’t vote. (The 25 

respondents who voted for Nader were treated as missing data). I created a 

three-category pres3 variable from two GSS questions about the 2004 

presidential election: (1) “Do you remember for sure whether or not you 

voted in that election?” (vote04); (2) “Did you vote for Kerry or Bush?” 

(pres04). Stata’s syntax in “replace-if” statements uses a double equal sign 

(==) inside the parentheses: 

 

generate pres3 = . 

replace pres3 = 0 if (vote04 == 2) 

replace pres3 = 1 if (pres04 == 1) 

replace pres3 = 2 if (pres04 == 2) 

label variable pres3 "three category presidential vote 2004" 

label define presvote  0 "Nonvoter" 1 "Kerry" 2 "Bush" 

label values pres3 presvote 

 

codebook pres3 
     type:  numeric (byte) 

label:  presvote 

range:  [0,2]            units:  1 

unique values:  3    missing .:  305/2023 

tabulation:  Freq.   Numeric  Label 

              539         0  Nonvoter 

              580         1  Kerry 

              599         2  Bush 

              305         .   
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The probability that the ith observation occurs in the jth category of a 

multicategory dependent variable is designation pij. Thus, the nonvoters 

Kerry voters, and Bush voters are coded 0, 1, and 2, respectively, and their 

probabilities are symbolized pi0, pi1, and pi2. Probabilities are defined as 

relative frequencies, so that their sum across the M categories must always 

equal unity: 1 = pij

M

1=j

 . Thus, in the 2008 GSS data, pi0 + pi1 + pi2 = .314 + .338 

+ .349 = 1.00. 

 

In a logistic regression equation, the expected probabilities depend in 

nonlinear ways on the set of K independent variables that predict them. The 

relationship is given by a multivariate logistic distribution function:  
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where 

pij = the probability that the ith case is in the jth category of the 

dependent variable. 
 

The triple subscripts indicate the ith observation on the kth predictor 

variable in the logistic equation for the jth category the multicategory 

dependent variable. To solve these equations for unique parameter 

estimates, a linear constraint must be placed on the set of s pertaining to 

the kth predictor. A conventional constraint is that they sum to zero: 

0 =  
jk 

M

1=j

 . Just as with dummy-variable predictors in a regression equation, 

the M categories of a multicategory dependent variable have only M - 1 

degrees of freedom. In addition to requiring that the s for the K predictors 

sum to 1.00, we can also specify that all coefficients in the Mth equation 

equal zero. Then, each estimated coefficient kj reveals the effect of 

predictor Xk on the odds of respondent i being in the jth dependent variable 

category relative to the omitted category M. Which dependent variable 

category we designate as our reference, or baseline, group is arbitrary. 
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For the multinomial logit model, the nonlinear transformations cannot 

assure that the probabilities will add to 1.00. But, as the next section 

demonstrates, the natural logarithms of the ratios of the probabilities for 

each category relative to the reference category must sum to 1.00 as 

required.  

 

The table below displays the parameter estimates for the trichotomous 

voting example, where the reference category is nonvoters. The Kerry 

multinomial logit coefficients indicate the effects of the independent 

variables on voting for Kerry vs. nonvoting, while the Bush coefficients 

indicate the effects of these predictors on voting for Bush vs. nonvoting. 

 

recode partyid (7=1), generate(party7) label(Dem to Repub identifier) 

recode region (5/7=1)(nonmiss=0), generate(south) 

recode race (2=1)(nonmiss=0), generate(black) 

codebook polviews partyid south black educ 

 

mlogit pres3 polviews partyid south black educ, baseoutcome(0) 

 
Multinomial logistic regression          Number of obs   =      1656 

                                         LR chi2(8)      =   1039.66 

                                         Prob > chi2     =    0.0000 

Log likelihood = -1294.0274              Pseudo R2       =    0.2866 

---------------------------------------------------------------------- 

    pres3 |   Coef.   Std. Err.     z     P>|z|   [95% Conf. Interval] 

----------+----------------------------------------------------------- 

Nonvoter  |  (base outcome) 

----------+----------------------------------------------------------- 

Kerry     | 

 polviews |  -.0968942 .0550182   -1.76   0.078  -.2047278    .0109394 

  partyid |  -.4289445 .0449496   -9.54   0.000  -.5170441   -.3408448 

    south |  -.3381738 .1481419   -2.28   0.022  -.6285266   -.0478210 

    black |   .2315242 .1825567    1.27   0.205  -.1262803    .5893288 

     educ |   .2498392 .0262964    9.50   0.000   .1982993    .3013792 

    _cons | -2.0176450 .4301744   -4.69   0.000 -2.8607710  -1.1745190 

----------+----------------------------------------------------------- 

Bush      | 

 polviews |  .4108660  .0606779    6.77   0.000   .2919395    .5297924 

  partyid |  .4327645  .0416732   10.38   0.000   .3510865    .5144425 

    south | -.0076531  .1498175   -0.05   0.959  -.3012899    .2859837 

    black | -1.355903  .3416369   -3.97   0.000 -2.0254990   -.6863072 

     educ |   .164274  .0268857    6.11   0.000   .1115798    .2169698 

    _cons | -5.262655  .4687691  -11.23   0.000 -6.1814260  -4.3438850 

---------------------------------------------------------------------- 
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Logically enough, several coefficients have opposite signs. For example, 

the +0.43 partyid parameter for Bush vote means that Republican identifiers 

were more likely to vote for him than to stay home on election day, while 

the -0.43 parameter for Kerry vote means that Republicans were less likely 

to vote for him than to stay home (conversely, the Democratic voters were 

more likely to vote for Kerry than to stay home). Similarly, political 

conservatives (polviews) were more likely to vote for Bush (0.41) than not to 

vote; however, the nonsignificant -0.10 polviews coefficient for Kerry 

means political conservatives were not more likely to stay home than to 

vote for him. The positive educ coefficients for both types voters indicate 

that more educated respondents were more likely to vote for either 

candidate than to stay at home. The negative coefficient for south indicates 

that Southerners were less likely to vote for Kerry than to stay home. But, 

the south coefficient for Bush voting is not significant. The negative 

coefficient for black indicates that blacks were less likely to vote for Bush 

than to stay home. But the black coefficient for Kerry voting is not 

significant. 

 

To exponentiated the mlogit coefficients, add “rr” (for relative risk ratio) to 

the end of the command: 

 

mlogit pres3 polviews partyid south black educ, baseoutcome(0) rr 

 
----------------------------------------------------------------- 

    pres3 |  RRR   Std. Err.    z    P>|z|   [95% Conf. Interval] 

----------+------------------------------------------------------ 

Nonvoter  |  (base outcome) 

----------+------------------------------------------------------ 

Kerry     | 

 polviews | .907652  .0499373  -1.76  0.078   .8148691  1.0109990 

  partyid | .6511961 .029271   -9.54  0.000   .5962805   .7111693 

    south | .7130713 .1056357  -2.28  0.022   .5333771   .9533044 

    black |1.26052   .2301164   1.27  0.205   .8813677  1.802778 

     educ |1.283819  .0337598   9.50  0.000  1.219327   1.351722 

----------+------------------------------------------------------ 

Bush      | 

 polviews |1.508123  .0915097   6.77  0.000  1.339022   1.69858 

  partyid |1.541513  .0642398  10.38  0.000  1.42061    1.672706 

    south | .9923761 .1486753  -0.05  0.959   .7398632  1.331071 

    black | .2577144 .0880448  -3.97  0.000   .131928    .5034317 

     educ  1.178538  .0316858   6.11  0.000  1.118043   1.242307 

----------------------------------------------------------------- 

 

Interpretation of a relative risk ratio  is similar to the odds ratio, except the 

comparison is to the reference category.
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Below is the model fit output. How well do the four predictors explain 

voting turnout and choice of candidate? 
 

fitstat 
 
Measures of Fit for mlogit of pres3 

Log-Lik Intercept Only: -1813.859  Log-Lik Full Model:  -1294.027 

D(1637):                 2588.055  LR(10):               1039.663 

                                   Prob > LR:               0.000 

McFadden's R2:              0.287  McFadden's Adj R2:       0.277 

Maximum Likelihood R2:      0.466  Cragg & Uhler's R2:      0.525 

Count R2:                   0.463  Adj Count R2:            0.183 

AIC:                        1.586  AIC*n:                2624.055 

BIC:                    -9544.663  BIC':                 -965.548 

 

Stata doesn’t have a command to produce a classification table for mlogit. 

However, you compute the number of cases correctly predicted in each 

category by following these steps. First, find the predicted probabilities of 

each choice for every case, and list the results: 

 

predict prednovote predkerry predbush if e(sample), pr 

list prednovote predkerry predbush 

 

Here are cases #61 to #70, which have a mixture of missing values, and 

differential predictions for all three choices: 

 

 
      +--------------------------------+ 

      | predno~e   predke~y   predbush | 

      |--------------------------------| 

  61. | .0570762   .9249492   .0179746 | 

  62. | .0617898   .9088636   .0293466 | 

  63. | .3525854   .6355622   .0118524 | 

  64. | .5696362   .3849729   .0453909 | 

  65. |        .          .          . | 

      |--------------------------------| 

  66. | .2353433   .7017469   .0629097 | 

  67. |        .          .          . | 

  68. | .1992154    .024945   .7758396 | 

  69. | .2080186   .1197146   .6722668 | 

  70. | .1039949   .8423758   .0536294 | 

      |--------------------------------| 
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Next, create three new binary variables, coded 0 or 1 for every case, 

according to whether the three predicted probabilities are < .50 or ≥ .50: 
 

generate nvbin = 0 

replace nvbin = 1 if (prednovote >= .50) 

replace nvbin = . if (prednovote == .) 

generate kerrybin = 0 

replace kerrybin = 1 if (predkerry >= .50) 

replace kerrybin = . if (predkerry == .) 

generate bushbin = 0 

replace bushbin = 1 if (predbush >= .50) 

replace bushbin = . if (predbush == .) 

 

List the results to see whether the replacements were made correctly, and 

also show the respondent’s reported vote decision (pres3). Finally, 

crosstabulate the binary predictions with the actual vote. 

 

list pres3 prednovote nvbin predkerry kerrybin predbush bushbin 

table pres3 nvbin 

table pres3 kerrybin 

table pres3 bushbin 

 
     +----------------------------------------------------------------------+ 

     |    pres3   predno~e  nvbin   predke~y  kerrybin   predbush   bushbin | 

     |----------------------------------------------------------------------| 

 61. |    Kerry   .0570762      0   .9249492         1   .0179746         0 | 

 62. |    Kerry   .0617898      0   .9088636         1   .0293466         0 | 

 63. | Nonvoter   .3525854      0   .6355622         1   .0118524         0 | 

 64. | Nonvoter   .5696362      1   .3849729         0   .0453909         0 | 

 65. |        .          .      .          .         .          .         . | 

     |----------------------------------------------------------------------| 

 66. | Nonvoter   .2353433      0   .7017469         1   .0629097         0 | 

 67. |        .          .      .          .         .          .         . | 

 68. |     Bush   .1992154      0    .024945         0   .7758396         1 | 

 69. |     Bush   .2080186      0   .1197146         0   .6722668         1 | 

 70. |    Kerry   .1039949      0   .8423758         1   .0536294         0 | 

     |----------------------------------------------------------------------| 

 
----------------------     ----------------------     ---------------------- 

2004 vote |   nvbin        2004 vote | kerrybin       2004 vote | bushbin    

          |    0     1               |    0     1               |    0     1 

----------+-----------     ----------+-----------     ----------+----------- 

 Nonvoter |  372   125      Nonvoter |  379   118      Nonvoter |  405    92 

    Kerry |  534    34         Kerry |  192   376         Kerry |  527    41 

     Bush |  573    17          Bush |  546    44          Bush |  150   440 

----------------------     ----------------------     ---------------------- 

 

Which predicted vote choice had the highest percentage correct? Lowest? 
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Box 9.2 Multicategory Probabilities Relative to a Reference Category 

____________________________________________________________ 
 

For M  2 discrete nonordered categories of a dependent variable and K  1 
predictor variables, let any arbitrarily chosen baseline or reference category M 
have the logit probability 

 e  + 1
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   for the m = M - 1 other categories of the 

dependent variable (the subscript i stands for the ith individual observation). 
 
Given an mth dependent variable category, its logit relative to the Mth baseline 
category is: 
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Exponentiate this expression and rearrange as follows: 
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Z

i

i

m i 

m i 

 

 
Now, substituting the first equation in this box into the immediately preceding 
equation and carrying out the multiplication results in the following equation for 
the probability that the ith observation falls into the mth category of the dependent 
variable:  
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Next, normalize the denominator of the preceding equation by setting  and all 

the s in the Mth baseline equation equal to 0. Because in general e0 = 1, so 

1 = eZiM  when all the  and  parameters in the Mth equation are set to zero. 

Consequently, we can replace the 1 in the denominator with this exponential 
term: 
 

 
e

e

e + e

e

e

e
 = ) m = Y ( p

Z

M

1 = j

Z

Z

1 - M

1 = j

Z

Z

Z

1 - M

1 = j

Z

i

m i 

m i 

m i  i 

m i 

m i 

m i 

 =  =
 + 1

 
 M

 

 
because the denominator now sums across all M equations. Thus, the probability 
that observation Yi is in the mth category is expressed relative to the sum over all 
M categories. 
 
Finally, also apply the probability formula to the Mth category where all 
parameters were set to zero: 
 

 
e  

1
 =

e  + 1

1
 = 

e  + e

e
 = ) M = Y ( p

Z

M

1 = j

Z

1 - M

1 = j

Z

1 - M

1 = j

0

0

i

m i m i m i 
 

 
When the probabilities for all M categories are added, their sum equals 1.00. That 
is, 
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ORDERED LOGIT 
 

Some categorical variables are ordered but cannot be considered 

continuous measures, thus rendering OLS linear regression problematic. 

Examples include subjective social class (lower, working, middle, upper), 

behavioral frequencies (none, little, some, many), and most attitude items 

(strong disagree, disagree, neither, agree, strongly agree). The ordered logit 

model, also called ordinal regression (McKelvey and Zavoina 1975)*, does 

not require an assumption of equal distances between the set of ordered 

categories.  

 

The dependent variable is conceptualized as a continuous latent variable 

(y*) ranging from –∞ to +∞. For a single independent variable, the structural 

equation is: 

 

iiy   X +  = i
*

 

 

The measurement model divides y*  into J ordinal categories: 

 

mimi yifmy      *

1 for m = 1 to J 

 

where the tau cutpoints (thresholds) are estimated by the program. The 

measurement model assumes that 

 

 Jand   0  

 

 

 

 

 
_____________________________________________________________________ 

 

* McKelvey, R.D. and W. Zavoina. 1975. “A Statistical Model for the Analysis of Ordinal 

Dependent Variables.” Journal of Mathematical Sociology 4:103-120. 

_____________________________________________________________________ 
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Suppose the distribution below represents an unobserved attitude towards 

some entity (e.g., “How well is President Obama doing his job?”). If a 

respondent’s attitude falls below a particular unobserved threshold, then 

she will likely choose a corresponding category on a provided response 

scale comprised of four ordered categories: “excellent, good, fair, poor.” 

(Although OLS regression assumes the dependent variable is normally 

distributed, it’s not required for the ordered logit model.) 

 

 
 

 

In contrast to logistic regression, which estimates the probability that Y=1, 

the ordered logit model examines the probability of falling into a particular 

range. 

  

To illustrate Stata’s ologit program, I analyze a 2008 GSS attitude item, 

natrace: “Are we spending too much, too little, or about the right amount on 

improving the conditions of Blacks.” Here’s the frequency distribution: 

 
        range:  [1,3]                        units:  1 

unique values:  3                        missing .:  1142/2023 

   tabulation:  Freq.   Numeric  Label 

                  350         1  too little 

                  420         2  about right 

                  111         3  too much 

                 1142         .   

 

Use Stata’s ologit program to regress natrace on six independent variables 

(to obtain odds ratios instead of coefficients, add “, or” to the end of this 

command line): 

Poor                    Fair                       Good       Excellent 
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ologit natrace black educ age female partyid polviews 

 
Ordered logistic regression          Number of obs   =        841 

                                     LR chi2(6)      =     184.19 

                                     Prob > chi2     =     0.0000 

Log likelihood = -728.43465          Pseudo R2       =     0.1122 

----------------------------------------------------------------- 

  natrace |   Coef.   Std. Err.   z   P>|z|  [95% Conf. Interval] 

----------+------------------------------------------------------ 

    black | -2.175909  .2600274  -8.37 0.000  -2.685553 -1.666264 

     educ |  -.032554  .0236124  -1.38 0.168   -.078834   .013725 

      age |  -.002502  .0041122  -0.61 0.543   -.010561   .005557 

   female |  -.225914  .1405413  -1.61 0.108   -.50137    .049541 

  partyid |   .095954  .0398634   2.41 0.016    .017823   .174085 

 polviews |   .308361  .0553721   5.57 0.000    .199833   .416888 

----------+------------------------------------------------------ 

    /cut1 |   .043502  .4565776                -.851373   .938377 

    /cut2 |  2.786168  .4714708                1.862102  3.710234 

----------------------------------------------------------------- 

 

Instead of a constant, ologit reports two cutpoints (thresholds), which can 

be used to compute the probability of a case falling into a particular interval 

on the dependent variable. Fully standardize all coefficients: 

 

listcoef, std help 

 
---------------------------------------------------------------------- 

natrace |     b        z    P>|z|   bStdX    bStdY   bStdXY      SDofX 

--------+------------------------------------------------------------- 

  black | -2.17591  -8.368  0.000 -0.7745  -1.0401  -0.3702     0.3559 

   educ | -0.03255  -1.379  0.168 -0.0982  -0.0156  -0.0469     3.0171 

    age | -0.00250  -0.609  0.543 -0.0431  -0.0012  -0.0206    17.2377 

 female | -0.22591  -1.607  0.108 -0.1129  -0.1080  -0.0540     0.4999 

partyid |  0.09595   2.407  0.016  0.1975   0.0459   0.0944     2.0585 

polviews|  0.30836   5.569  0.000  0.4547   0.1474   0.2173     1.4745 

---------------------------------------------------------------------- 

       b = raw coefficient 

       z = z-score for test of b=0 

   P>|z| = p-value for z-test 

   bStdX = x-standardized coefficient 

   bStdY = y-standardized coefficient 

  bStdXY = fully standardized coefficient 

   SDofX = standard deviation of X 

 

Which independent variable has the largest effect on natrace? Which have 

the least impacts? 
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III. OTHER TOPICS 

 

This section examines other topics applicable to multivariate models. It 

includes: (1) nonlinear independent variables; (2) dummy variables; (3) 

interaction terms; (4) comparing separate regression equations. 

 

NONLINEAR INDEPENDENT VARIABLES 

 

In logistic regression, a parameter estimate (b) depicts a linear relation 

between the logit of a dichotomous dependent variable and an independent 

variable. That is, for each unit increase in X, the logit increases (or 

decreases) by b-units. Although these effects can be transformed into 

nonlinear relationships by exponentiation, the logged relationship remains 

linear. By recoding the independent variable, we can test whether 

significant nonlinear effects on the logit occur. Three methods, which can 

also be applied to OLS regression, use power terms, logarithmic 

transformations, and spline coding. 

 

 

1. POWER TERMS 

 

A common method of assessing nonlinear effects of a continuous 

independent is to include one or more power transformations of the 

predictors. For example, consider a logistic regression of Republican party 

identification (partyid recoded as partyid2 where “strong Republican,” “not 

strong Republican,” and “Independent, near Republican” = 1, “Independent 

and Democrat” = 0) on years of education (educ): 

 

recode partyid(0/3=0)(4/6=1)(7=.), generate (partyid2) 

logit partyid2 educ 

 

 )016.0()222.0(

0610. + 499.1- = L̂ educi
X

 

 

where the standard errors are in parentheses. The positive sign of the 

coefficient of education indicates that each year of schooling increases the 

log-odds of identifying with the Republican party. At what level of 
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significance can you reject the null hypothesis that education is unrelated 

to party in the population? 

 

Next, create a squared term for education and include it to the equation 

with the linear predictor: 

 

generate educ2=educ*educ 

logit partyid2 educ educ2 

 

The results show that both predictors are significant, but have opposite 

signs: 
 

)004.0( )100.0()674.0(

008.02850. + 914.2- = L̂
2

2educeduci
XX 

 

 

The difference in –2LLs for the two equations is also significant: G2 = 

(2503.9) - (2497.0) = 6.9 for df = 1, p < .01. 

 

Substantively, the second equation shows that although the logit of 

Republican identification increases linearly with education, such support 

increasingly falls off as education approaches its highest levels. 

 

By graphing the predicted probabilities for both equations across the 21 

years of educ, we can easily visualize how the combined linear and 

nonlinear effects relate to Republican party identification. 

 

logit partyid2 educ 

predict repub_linear 

logit partyid2 educ educ2 

predict repub_nonlinear 

sort educ 

twoway (line repub_linear educ) (line repub_nonlinear educ), 

ytitle(Probability Republican) xtitle(Education) legend(order(1 

“Linear” 2 “Nonlinear”)) 
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Increasing Republicanism occurs only among people who completed 

schooling before obtaining a college degree. Among people with college 

degrees (16 years) and more, Republican identification does not increase 

but slightly decreases. Because the linear equation’s parameter estimates 

are heavily influenced by the large numbers of cases occurring in the 

middle-range of educ, it failed to detect the downward-curving right tail. 
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2. LOGARITHMIC INDEPENDENT VARIABLES 

 

The independent variables in a logistic regression equation can also be 

transformed using the logarithmic function. Such specifications involve 

nonlinearities in the dependent and independent variables’ relationships. 

To illustrate, I estimated a natural log relationship between women’s ages 

and multiple children ever-born. I dichotomized between 2 or more children 

ever-born ( = 1) versus one or none ( = 0). My hypothesis is older woman 

are likely to have had multiple childbirths. However, in using the natural log 

of marital age, I expect the probability of plural motherhood to increase 

more slowly with age. The logistic equation specification is  

 

ageXL ln    = ˆ
i

 
 

 

where ln Xage is the natural logarithm (base e) of age in years. The  

coefficient has a positive sign, consistent with my hypothesis that older 

women are more likely than younger women to have two or more children. 

 

recode childs(0/1=0)(nonmiss=1), generate(kidsbin) 

generate ageln=ln(age) 

 

The logistic regression equation for N=1,085 women: 

 

logit kidsbin ageln if sex==2 

 

 )18.0(  )680.0( 

ln 11.2  42.7 = ˆ
i ageXL 

 

 

The expected logit is not constant across the (log-transformed) age 

variable. For example, the expected logit of multiple births for a woman age 

18 years is -7.42 + (2.11) (2.89) = -1.32, while a woman of 20 years has a 

expected logit of -7.42 +(2.11)(3.00) = -1.10, a difference of 0.22 across that 

three-year interval. Women ages 37 and 40 years have a smaller difference 

(0.20 and 0.36 = 0.16), while the difference between women ages 57 and 60 

years is still smaller (1.11 and 1.22 = .11). Clearly, a woman’s expected odds 

of multiple childbirth increase with age, but at a decreasing rate. 
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A graph of the predicted probabilities also shows a nonlinear relationship 

between age and the probability of multiple childbirths: 

 

predict probkids 

sort age 

twoway (line probkids age), ytitle(Probability Multiple Births) 

xtitle(Age)  
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3. SPLINES 

 

The effect of a continuous independent variable on a dependent variable 

may not be uniformly linear or curvilinear across its range. Among other 

variables, age, education, and income may exhibit threshold effects, 

“kinks,” and other unusual discontinuities. One way to determine whether 

such departures occur is by spline-coding the predictor. In effect, one or 

more new independent variables are constructed having this general form: 

 

newvar = oldvar - x if oldvar > k and 0 otherwise 

 

where k is the threshold value above which a shift in slope is expected. 

 

Here’s an example of spline coding for schooling. hischool is coded for 

completing high school plus additional years, while college counts the 

number of years from a BA through grad school. A coefficient for one of 

these splines, controlling for the linear effect of educ, could be interpreted 

as the impact of earning diploma on the dependent measure. 

 

educ hischool college 

0 0 0 

1 0 0 

2 0 0 

3 0 0 

4 0 0 

5 0 0 

6 0 0 

7 0 0 

8 0 0 

9 0 0 

10 0 0 

11 0 0 

12 1 0 

13 2 0 

14 3 0 

15 4 0 

16 5 1 

17 6 2 

18 7 3 

19 8 4 

20 9 5 
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To illustrate, I analyze the conditional effects of college education on the 

logit of partyid2, where 1 = Republican, 0 = Other. 

 

Create college, a spline-coded variable for the number of years of education 

starting from 16 up to 20 (i.e., college graduation and post-BA schooling).  

 

recode educ(0/15=0), generate(coll) 

recode coll(0=0)(16=1)(17=2)(18=3)(19=4)(20=5), generate(college) 

 
College   |      Freq. 

----------+----------- 

        0 |      1,431 

        1 |        322 

        2 |         51 

        3 |        124 

        4 |         38 

        5 |         52 

---------------------- 

 

As shown at the beginning of this section, a logistic regression of partyid2 

on educ produces a highly significant positive effect on the log-odds of 

Republican identification. Here’s that linear effect on the logit again: 

 

 )016.0()222.0(

0610. + 499.1- = L̂ educi
X

 

Next, enter both educ and the spline-coded college variable, which results 

in two highly significant effects, with opposite signs: 

 

  )064.0()026.0()336.0(

 2280.  1330. + 337.2- = L̂ collegeeduci
XX 

 

 

The positive linear effect of education on Republican identification is much 

steeper in the second equation, but is more than offset in the higher end by 

a strong negative effect from years 16 to 20. The joint effect of these 

education variables on the probability of Republican identification can be 

seen in the figure below, which graphs both equations: 
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logit partyid2 educ 

predict repub_linear 

logit partyid2 educ college 

predict repub_spline 

sort educ 

twoway (line repub_linear educ) (line repub_spline educ), 

ytitle(Probability Republican) xtitle(Education) legend(order(1 

"Linear" 2 "Spline")) 
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The spline plot shows that the expected probability of Republican 

identification increases with each year of educ, reaching a peak at 15 years. 

Then, as the college effect takes over, Republican identification decreases 

markedly through the next five years. Although a somewhat similar pattern 

occurred in the power equation above, the spline analysis indicates that the 

reversal at the highest education levels is even more dramatic. 
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DUMMY VARIABLES 

 

Principles of dummy variable predictors for logistic regression are the 

same as for OLS regression with continuous dependent variables (see 

pages 271-275 in SSDA). This example analyzes a dichotomous dependent 

variable happyd (“very happy” = 1 and “pretty happy, not too happy” = 0), 

recoded from the 2008 GSS variable happy. The marital status variable has 

five unordered categories:   

 
marital        marital status 

        range:  [1,5]                        units:  1 

unique values:  5                        missing .:  5/2023 

   tabulation:  Freq.   Numeric  Label 

                  972         1  married 

                  164         2  widowed 

                  281         3  divorced 

                   70         4  separated 

                  531         5  never married 

                    5         .   

 

The five dummy dichotomies will have the pattern below in relation to 

marital. Every respondent is coded "1" only one dummy for his/her marital 

status, "0" on all other dummies: 

 
marital: married widowd divorced separated unmarried 
1. married 1 0 0 0 0 
2. widowed 0 1 0 0 0 
3. divorced 0 0 1 0 0 
4. separated 0 0 0 1 0 
5. never married 0 0 0 0 1 

 

Use these Stata generate commands to create the five dummy variables: 

 

generate married = marital == 1 if marital < . 

generate widowd = marital == 2 if marital < . 

generate divorced = marital == 3 if marital < . 

generate separated = marital == 4 if marital < . 

generate unmarried = marital == 5 if marital < . 
 

Always run a codebook on new variables to see whether the commands 

worked properly. Here’s one: 
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married   

        range:  [0,1]     units:  1 

unique values:  2     missing .:  5/2023 

            tabulation:  Freq.  Value 

                          1046  0 

                           972  1 

                             5  . 

 

These five dummies are linearly dependent: If you know a person's codes 

on any four of the dummies, you also know his/her code on the fifth 

dummy. Consequently, all five dummies cannot be used together as 

predictors in a multivariate equation. Instead, one dummy must be omitted: 

it serves as a "reference" or "baseline" category against which to judge the 

effects of the remaining K - 1 dummy predictors. 

 

Let’s choose divorced as the reference category (so the four coefficients 

have positive signs) and estimate a logistic regression with HAPPYD as the 

dependent dichotomy: 

 

logistic happyd married widowd separated unmarried, coef 

 
Logistic regression         Number of obs   =    2010 

                            LR chi2(4)      =  118.03 

                                Prob > chi2 =  0.0000 

Log likelihood = -1163.6958       Pseudo R2 =  0.0483 

----------------------------------------------------- 

      happyd |      Coef.   Std. Err.      z    P>|z| 

-------------+--------------------------------------- 

     married |   1.025357     .16305     6.29   0.000 

      widowd |  -.0625204   .2493096    -0.25   0.802 

   separated |  -.2933499   .3608044    -0.81   0.416 

   unmarried |  -.0553692   .1859149    -0.30   0.766 

       _cons |  -1.386294   .1494036    -9.28   0.000 

----------------------------------------------------- 

 

The B-coefficients are interpreted relative to divorced persons (i.e., the 

omitted divorced dummy has an implicit B = 0). Because all four dummy 

variable coefficients have positive signs, persons in these four marital 

categories have higher predicted logit values for “very happy” than do the 

divorced respondents. However, only married dummy has significantly 

higher log-odds of very happiness (p < .001) in the population. The 

separated and widowd respondents do not differ significantly from 

divorced persons in their log-odds of being very happy. 
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Suppose we had chosen a different reference category. Re-run the logistic 

regression omitting married and adding divorced: 

 
Logistic regression         Number of obs   =    2010 

                            LR chi2(4)      =  118.03 

                                Prob > chi2 =  0.0000 

Log likelihood = -1163.6958       Pseudo R2 =  0.0483 

----------------------------------------------------- 

      happyd |      Coef.   Std. Err.      z    P>|z| 

-------------+--------------------------------------- 

    divorced |  -1.025357     .16305    -6.29   0.000 

      widowd |  -1.087878   .2099945    -5.18   0.000 

   separated |  -1.318707   .3348466    -3.94   0.000 

   unmarried |  -1.080726   .1284787    -8.41   0.000 

       _cons |  -.3609372   .0652984    -5.53   0.000 

----------------------------------------------------- 

 

The overall fit statistics remain unchanged. But the B's for the dummy set 

are now all negative and all significant! Does this mean we must change 

our interpretation of how marital status affects happiness, according to 

whichever baseline/reference we choose? 

 

Compare the two outputs: Which marital group is happiest? Which is least 

happy? (HINT: Compare the B’s for married and divorced in the two 

equations.) Are the other 3 categories similar to one another and closer to 

the happiest or least happy category? Do both equations yield the same 

substantive interpretations? Can you show how to translate the coefficients 

in the first equation into those in the second equation & vice versa? 
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INTERACTION EFFECTS 

 

Interaction effects can yield important insights into complex conditional 

relationships among three or more variables. We’ll examine three 

approaches in the logistic regression situation: (1) the ANCOVA method for 

interaction of a continuous independent variable and a dummy variable on 

a dependent variable; (2) the centered product term method for the 

interaction of two continuous independent variables; and (3) the 

comparison of parameters for separate subsample equations. 

 

1. ANCOVA 

 

The analysis of covariance (ANCOVA) model in OLS and logistic regression 

refers to an equation that includes both continuous and dummy 

independent variables. Their parameters estimates are additive effects; that 

is, the effect of each predictor is same (constant) regardless of the values 

of the other independent variables. For example, estimate a logistic 

regression of fepresch ("A preschool child is likely to suffer if his or her 

mother works..") on a continuous variable age and a dummy variable 

female. The dependent variable is dichotomized into “Agree” = 1 and 

“Disagree” = 0. 

 

recode fepresch (1/2=1)(3/4=0), generate(fepreschd) 

recode sex (2=1)(1=0), generate(female) 

logistic fepreschd age female, coef 
 

Logistic regression          Number of obs   =    1300 

                             LR chi2(2)      =   50.66 

                             Prob > chi2     =  0.0000 

Log likelihood = -825.82664       Pseudo R2  =  0.0298 

------------------------------------------------------ 

   fepreschd |      Coef.   Std. Err.      z     P>|z|  

-------------+---------------------------------------- 

         age |   .0172548   .0035105     4.92    0.000  

      female |   -.616306   .1179667    -5.22    0.000  

       _cons |  -1.073554   .1846264    -5.81    0.000  

------------------------------------------------------ 

 

Each year of age strongly increases the predicted logit of a traditional sex-

role response by 0.017 and the female dummy has a negative effect (-0.616), 

meaning that women are slightly less traditional than men. The additive 

nature of this specification means that the effect of age is identical for both 
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genders: men and women express more traditional views by identical logit 

amounts per year of age. 

 

We can test the hypothesis that the age-effect differs for men and women 

by forming an interaction term between gender and age. First, multiply 

these two values to create the interaction term femage. Because the men 

are coded "0" on female, all male respondents are given the value "0" on 

the interaction term: 

 

generate femage = age*female 

 

Include the two "main-effect" predictors plus their interaction term in 

another logistic regression: 

 

logistic fepresch age female femage, coef 

 
Logistic regression          Number of obs  =    1300 

                                LR chi2(3)  =   54.87 

                               Prob > chi2  =  0.0000 

Log likelihood = -823.71735      Pseudo R2  =  0.0322 

----------------------------------------------------- 

   fepreschd |      Coef.   Std. Err.      z    P>|z| 

-------------+--------------------------------------- 

         age |   .0248372   .0051567     4.82   0.000 

      female |    .078602   .3583515     0.22   0.826 

      femage |  -.0144894   .0070774    -2.05   0.041 

       _cons |  -1.431303   .2574344    -5.56   0.000 

----------------------------------------------------- 

 

 

The femage interaction has a small negative effect, while the main effect of 

female has vanished. We can see the differing effects for age and gender by 

combining the four parameters to create two predictor equations. For men, 

the effect of age on attitude involves only the constant and age coefficients: 

 

age

age

femagefemaleagei

X

X

XDX

0240. + 431.1- = 

)0(0150. )0(0790. 0240. + 431.1- = 

0150. 0790. 0240. + 431.1- = L̂
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The equation for women combines all four parameters: 

 

AGE

ageage

femagefemaleagei

X

XX

XDX

0090. + 352.1- = 

0150. )1(0790. 0240. + 431.1- = 

0150. 0790. 0240. + 431.1- = L̂

)1(



 

 

The graph shows how the expected logits vary with age for both genders, 

revealing that endorsing the traditional response to fepreschd rises about 

267% more per year of age for men than for women (0.024 versus 0.009). 

Younger men are slightly more traditional than younger women, but older 

men are much more traditional than older women! 

 

generate logitwomen = -1.352 + 0.009*age if female ==1 

generate logitmen = -1.431 + 0.024*age if female ==0 

twoway (line logitwomen age) (line logitmen age) 
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2. CENTERED PRODUCT TERMS 

 

Bilinear interaction has been the traditional OLS regression technique for 

estimating the interaction effect of two continuous independent variables 

on a dependent measure. By extension, the method can also be applied to 

logistic regression. The procedure involves multiplying two predictors, then 

adding this product term to the equation along with the original measures 

(whose parameters are referred to as the “main effects”): 

 

)(      +  = L̂ 2132211 XXXX
i

   

 

If the third coefficient is significant, it indicates that the main effect of X1 on 

the dependent variable is conditional on (i.e., varies according to) the level 

of X2. Similarly, the effect of X2 is conditioned by the level of X1. More below 

on the interpretation of interaction effects. 

 

The bilinear multiplicative method frequently generates substantial 

multicollinearity, that is, high correlations among variables. As a result the 

parameter estimates may be accompanied by huge standard errors, which 

makes meaningful substantive interpretations difficult. A preferred solution 

is to center the two continuous predictors before computing their product 

term.* This procedure usually reduces the magnitude of the correlations 

between the multiplicative interaction term and its component predictors. 

 
In Stata regress postestimation, the command estat vif will produce 
variable inflation factor (VIF) scores for the independent variales that 
indicate the presence of multicollinearity. VIF values close to 1.00 indicate 
that multicollinearity is not problematic. A comparison of VIFs in equations 
using noncentered versus centered specifications can reveal dramatic 
reductions in multicollinearity with the latter method. VIF is not available for 
logistic regression. 

 

The centering procedure is simple: Form the deviation of both variable’s 

scores from their respective means, then multiply them and store the 

product in a third variable. Use all three centered measures as predictors of 

a dichotomous dependent variable. 
_____________________________________________________________________ 

 
* Pages 30-33 in Jaccard, James, Robert Turrisi and Choi K. Wan. 1990. Interaction Effects in 
Multiple Regression. Newbury Park, CA: Sage. 

____________________________________________________________________________ 
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An example illustrating this method is the age-education interaction effect 

on happyd. Find the means of age and educ; create variables centered 

around each mean; create the interaction term by multiplying these 

centered variables; estimate a logistic regression equation with all three 

predictors. 

 

summarize educ age 

 
Variable |    Obs        Mean    Std. Dev.     Min      Max 

---------+------------------------------------------------- 

    educ |   2018    13.43211    3.078964        0       20 

     age     2013     47.7084    17.35084       18       89 

 

generate educctr = (educ - 13.43211) 

generate agectr = (age – 47.7084) 

generate educage = educctr*agectr 

logistic happyd educctr agectr educage, coef 

 
Logistic regression     umber of obs   =    2000 

                            LR chi2(3) =   22.51 

                           Prob > chi2 =  0.0001 

Log likelihood = -1202.7509  Pseudo R2 =  0.0093 

------------------------------------------------ 

 happyd |      Coef.   Std. Err.      z    P>|z| 

--------+--------------------------------------- 

 agectr |   .0078516   .0028814     2.72   0.006 

educctr |   .0621825   .0167368     3.72   0.000 

educage |  -.0016152   .0009355    -1.73   0.084 

  _cons |  -.8850285   .0497711   -17.78   0.000 

------------------------------------------------ 

 

Although main effects of age and education are highly significant, the 

centered interaction term is significant at p < .05 only for a one-tailed 

hypothesis. 

 

The substantive interpretation of a centered bilinear interaction effect is 

facilitated by: (1) choosing one of the two main predictors as “moderator 

variable”; (2) selecting low-, medium-, and high-scores of the second 

predictor; and (3) calculating the differing slopes of the second predictor. 

 

I chose educctr as the moderator: what is the effect of agectr (i.e., of 

different generations) on happyd, holding constant the level of education? 

Given that one standard deviation of educ = 3.08 years, three plausible 

educctr scores are – 3.08 (i.e., 10.35 years of education), 0.00 (13.43 years), 

and +3.08 (16.51 years). Here are the slopes of centered agectr at those 

three centered educctr levels: 
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Thus, for a one standard deviation increase in educ, the slope of the age 

effect on the log-odds of happyd falls by -0.0049. The figure below plots the 

expected happyd logit (= adjusted intercept + age slope) for the three 

education levels. To aid interpretation, I plotted these lines above the 

original, noncentered age values. What are your interpretations about how 

the age-education interaction affects the log-odds of happyd? 

 

generate loweduc = -1.0766 + 0.0128*age 

generate mededuc = -0.8850 + 0.0079*age 

generate higheduc = -0.6934 + 0.0030*age 

twoway (line loweduc age) (line mededuc age)(line higheduc  age), 

ytitle(Logit of Happyd) xtitle(Age of Respondent) 
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3. COMPARING SUBSAMPLE EQUATIONS 

 

Another approach to interaction involves estimating separate equations for 

samples from two populations, then performing a t-squared test of the 

difference in their estimated slope parameters, using the formula: 
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where the squared difference in corresponding regression parameters is 

divided by the sum of their squared standard errors. Squaring a t-score is 

equivalent to chi-square for 1 degree of freedom (i.e., a Wald statistic). If 

you set a region of rejection at  = .05, then the critical value of t2 = (1.96)2 = 

3.84 for a two-tailed alternative to a null hypothesis that the two β’s are 

equal in the populations. 

 

Test whether party identification, education, and Southern residence effects 

on the logit of conservative political views differ for men and women. 

 

logit polviewsd partyid educ south if female==1 

logit polviewsd partyid educ south if female==0 

 
                     WOMEN                MEN 

                 B          se        B          se 

constant -1.329 0.367 -2.243 0.383 

partyid 0.490 0.038 0.467 0.040 

educ -0.068 0.026 0.006 0.026 

south 0.345 0.154 0.256 0.159 

  (N)               (576)                 (610) 

 

Neither the partyid nor south effects differ by gender. But, for the educ 

parameters, the test statistic is: 
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Hence, we can reject a two-tailed null hypothesis that the education effect 

on conservatism differs for men and women, with the probability of a Type I 

error (false rejection error) p < .05.
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IV. MODELS FOR COUNTS 

 

This section briefly discusses multivariate equations with dependent 

variables that are neither continuous nor dichotomous. Many dependent 

variables are counts, nonnegative integers for the number of activities, 

events, or occurrences. For example, how many children live in a 

household; number of automobiles per family; how many new firms started 

in an industry; the number of trips to national parks. Models for count data 

include Poisson regression, negative binomial regression, zero-inflated 

count models (both Poisson & NB regression), zero-truncated count 

models, hurdle models, and random-effects count models. Time allows for 

examining only the first three models. The last topic in this module is the 

censored regression or Tobit model. 

 

 

1. POISSON REGRESSION 

 

In many social analyses, the dependent variable is better conceived as a 

discrete count of the number of occurrences over an observation period, 

rather than a measure of continuous variation or as a simple dichotomous 

choice. For example: the ideal number of children; the number of 

automobiles owned; how many acquaintances with AIDS; voluntary 

association memberships; number of traffic accidents; number of major 

earthquakes. Once again, an OLS regression approach is unsatisfactory. 

The Poisson regression (named for a French mathematician, not a fish) 

uses a probability density function whose expected mean and variance are 

equal: 
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where y is the observed count, μ is the expected count (and variance), and 

y! is the factorial of the discrete number of events (e.g., 3! = (3)(2)(1) = 6). 
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A classic application appeared in Ladislaus von Bortkiewicz's The Law of 

Small Numbers (1898), a table showing the number of deaths from mule-

kicks in 10 Prussian cavalry corps over 20 years of observation (200 corps-

years):* 

 

 Yi ni 

 0 109 

 1 65 

 2 22 

 3 3 

 4 1 
__________________________________________________________________________ 
 

* From page 292 in James S. Coleman. 1964. Introduction to Mathematical Sociology. 

Glencoe, IL: Free Press. 

__________________________________________________________________________ 
 

Applying the formula y! / ) e( = p̂
y-

y 
, where μ is the sample mean (0.61 

deaths per corps-year), yields the following estimated frequencies: no deaths 

= 108.7; one death = 66.3; two = 20.2; three = 4.11; and four = 0.6. These 

values appear to approximate the observed data very closely. 

 

Stata’s Poisson regression program models the natural log of μ as a 

function of K independent variables: 
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Equivalently, by exponentiating both sides: 
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The 2008 GSS respondents were asked to tell “the names of the people who 

usually live in this household.” Here’s the distribution of hompop: 

 

table hompop 
---------------------- 

number of | 

persons in| 

household |      Freq. 

----------+----------- 

        1 |        523 

        2 |        701 

        3 |        322 

        4 |        277 

        5 |        125 

        6 |         54 

        7 |         13 

        8 |          6 

        9 |          1 

       11 |          1 

---------------------- 

 

The Poisson regression equation of hompop on six predictors: 
 

poisson hompop educ age female black catholic south 
Poisson regression             Number of obs   =   1999 

                                   LR chi2(6)  = 243.29 

                                  Prob > chi2  = 0.0000 

Log likelihood =  -3317.537         Pseudo R2  = 0.0354 

---------------------------------------------------------- 

    hompop |     Coef.        Std. Err.     z        P>|z| 

-----------+---------------------------------------------- 

      educ |    -.0146108     .0046827    -3.12      0.002 

       age |    -.0125042     .000848    -14.75      0.000 

    female |     .0489142     .0283084     1.73      0.084 

     black |    -.0477458     .0419144    -1.14      0.255 

  catholic |     .0366189     .0338193     1.08      0.279 

     south |     .069378      .0294924     2.35      0.019 

     _cons |    1.642186      .080971     20.28      0.000 

---------------------------------------------------------- 

 

Three two-tailed and one one-tailed null hypotheses can be rejected at p < 

.05 or lower. The positive coefficients indicate a higher rate (large 

household size) for women and Southern residents, while negative 

coefficients indicate lower household sizes for older and better-educated 

respondents. 

 

Request the exponentiated Poisson coefficients and their standardized 

values with this command: 
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listcoef educ age female black catholic south, help 
poisson (N=1999): Factor Change in Expected Count  

 Observed SD: 1.4166955 

---------------------------------------------------------------- 

   hompop |      b         z     P>|z|    e^b    e^bStdX   SDofX 

----------+----------------------------------------------------- 

     educ |  -0.01461   -3.120   0.002   0.9855   0.9560  3.0827 

      age |  -0.01250  -14.745   0.000   0.9876   0.8052 17.3274 

   female |   0.04891    1.728   0.084   1.0501   1.0247  0.4987 

    black |  -0.04775   -1.139   0.255   0.9534   0.9837  0.3440 

 catholic |   0.03662    1.083   0.279   1.0373   1.0156  0.4223 

    south |   0.06938    2.352   0.019   1.0718   1.0339  0.4806 

---------------------------------------------------------------- 
      b = raw coefficient 

      z = z-score for test of b=0 

  P>|z| = p-value for z-test 

e^b    = exp(b)=factor change in expected count for unit increase in X 

e^bStdX = exp(b*SD of X)=change in expected count for SD increase in X 

  SDofX = standard deviation of X 

 

As in logistic regression, exponentiated coefficients help with 

interpretation. Similar to odds ratios, they’re called “incidence rate ratios.” 

Recall that exponentiated coefficients are multiplicative, raising or lowering 

the odds proportionally depending on whether they’re above or below 

1.000.  Thus, being female increases the expected count of people in the 

household by (1.050 – 1.000)(100%) = +5.0% relative to males. Each year of 

educ reduces the expected incidence by (0.985 -1.000)(100%) = -1.5%. 

 

Stata calculates percent changes for a unit of predictor X and for one 

standard deviation of X. With the latter, age has the largest impact (-19.5%): 

 

listcoef educ age female black catholic south, percent help 
poisson (N=1999): Percentage Change in Expected Count  

---------------------------------------------------------------- 

   hompop |      b         z     P>|z|    %     %StdX      SDofX 

----------+----------------------------------------------------- 

     educ |  -0.01461   -3.120   0.002  -1.5     -4.4     3.0827 

      age |  -0.01250  -14.745   0.000  -1.2    -19.5    17.3274 

   female |   0.04891    1.728   0.084   5.0      2.5     0.4987 

    black |  -0.04775   -1.139   0.255  -4.7     -1.6     0.3440 

 catholic |   0.03662    1.083   0.279   3.7      1.6     0.4223 

    south |   0.06938    2.352   0.019   7.2      3.4     0.4806 

---------------------------------------------------------------- 
       b = raw coefficient 

       z = z-score for test of b=0 

   P>|z| = p-value for z-test 

       % = percent change in expected count for unit increase in X 

   %StdX = percent change in expected count for SD increase in X 

   SDofX = standard deviation of X 
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Another way to obtain the incidence rate ratios is by appending “irr” at the 

end of the Poisson command: 
 

poisson hompop educ age female black catholic south, irr 
-------------------------------------------------- 

   hompop |        IRR   Std. Err.      z    P>|z| 

----------+--------------------------------------- 

     educ |   .9854954   .0046148    -3.12   0.002 

      age |   .9875736   .0008375   -14.75   0.000 

   female |    1.05013   .0297275     1.73   0.084 

    black |   .9533761   .0399602    -1.14   0.255 

 catholic |   1.037298   .0350806     1.08   0.279 

    south |   1.071841   .0316112     2.35   0.019 

-------------------------------------------------- 

 

Stata will calculate the predicted count values for each R. Use these 

commands, where “e(sample)” means the effective sample, excluding 

cases with missing values: 

 

predict prhompop if e(sample), n 

list hompop prhompop if e(sample) 
      +-------------------+ 

      | hompop   prhompop | 

      |-------------------| 

   1. |      2   2.436998 | 

   2. |      1   2.116504 | 

   3. |      2   2.263246 | 

   4. |      3   2.852501 | 

   5. |      3   2.732911 | 

      |-------------------| 

   6. |      2    1.64375 | 

   7. |      5   3.462719 | 

   8. |      5   2.767299 | 

   9. |      1   2.399398 | 

  10. |      1   2.251551 | 

 

Some predictions fit the observations closely (#3,4) but others are well of 

the mark (#7,8). Overall, the equation fits the data poorly (see Pseudo-R2). 

 

Exposure Time 

 

To this point, an implicit assumption is that everyone is at risk of an event 

occurring for the same amount of time. In the example, each R had the 

same period in which to acquire households. More typically, different Rs 

are observed for different exposure times. Young people have less time in 
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which to accumulate events; for example, young criminals commit fewer 

crimes than older ones; young academic publish fewer papers than older 

ones; veteran soldiers with more time in combat zones receive more 

wounds than newbies. 

 

Different exposure times can be incorporated into count models. Modify a 

multiplicative Poisson regression equation to include the natural log of the 

exposure time: 
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where ti is the exposure time for case i. 

 

Suppose we assume that R’s age is a reasonable proxy for exposure time. 

Then add the “exposure(varname)” option to the Poisson command: 

 

poisson hompop educ female black catholic south, exposure(age) 
Poisson regression            Number of obs =    1999 

                              LR chi2(5)    =   31.84 

                              Prob > chi2   =  0.0000 

Log likelihood = -4163.3342   Pseudo R2     =  0.0038 

----------------------------------------------------- 

      hompop |      Coef.   Std. Err.      z    P>|z| 

-------------+--------------------------------------- 

        educ |  -.0014149   .0044842    -0.32   0.752 

      female |   .0338835   .0283118     1.20   0.231 

       black |   .1391718   .0415367     3.35   0.001 

    catholic |   .0806812   .0338356     2.38   0.017 

       south |   .1064363   .0295357     3.60   0.000 

       _cons |  -3.012744   .0677837   -44.45   0.000 

         age | (exposure) 

----------------------------------------------------- 

 

To show how exposure(varname) operates, the same results occur if the 

natural log of age, lnage, is added as an independent variable and 

constrained to 1: 

 

generate lnage=ln(age) 

constraint define 1 lnage=1 

poisson hompop lnage educ female black catholic south, 

constraint(1)  
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Poisson regression           Number of obs  =    1999 

                               Wald chi2(5) =   32.40 

Log likelihood = -4163.3342    Prob > chi2  =  0.0000 

 ( 1)  [hompop]lnage = 1 

----------------------------------------------------- 

      hompop |      Coef.   Std. Err.      z    P>|z| 

-------------+--------------------------------------- 

       lnage |          1          .        .       . 

        educ |  -.0014149   .0044842    -0.32   0.752 

      female |   .0338834   .0283118     1.20   0.231 

       black |   .1391718   .0415367     3.35   0.001 

    catholic |   .0806812   .0338356     2.38   0.017 

       south |   .1064363   .0295357     3.60   0.000 

       _cons |  -3.012744   .0677837   -44.45   0.000 

----------------------------------------------------- 

 

The substantive results change when exposure time is held constant. Now 

the education and gender effects are no longer significant, while black, 

catholic, and south are all associated with larger household sizes.
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2. NEGATIVE BINOMIAL REGRESSION 

 

Poisson regression also makes an assumption of “equidispersion” – that 

the mean and variance of the dependent variable are identical. Few real 

data can meet this requirement; more often, “overdispersion” occurs – the 

variance is much larger than the mean. The result is underestimated 

standard errors and false rejection of the null hypothesis. Overdispersion 

most often occurs because of highly skewed dependent variables, with 

many more zeros than expected. For example, most academics have no 

publications, but a few have extremely high article counts. 

 

To correct for overdispersion, the negative binomial regression model 

(NBRM) adds an error term that is presumed uncorrelated with the X’s: 
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To identify the model, the expected value of the error = 1, equivalent to an 

expected value of 0 in the logistic regression model. The error term is 

unknown, but by assuming it is has a gamma distribution the model 

becomes mathematically tractable. The NBRM is: 
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where Γ is the gamma function. The parameter, α, determines the degree of 

dispersion in the predictions, with larger values indicating a greater spread 

in the data.  
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The NBRM example below analyzes the number of R’s sex partners in the 

past 12 months (partners12) as the dependent count variable. Here is the 

distribution: 

 

generate p12=partners 

recode p12(0=0)(1=1)(2=2)(3=3)(4=4)(5=8)(6=15)(7=60)(8=120) 

            (nonmissing=.), generate(partners12) 

table partners12 
---------------------- 

RECODE of | 

p12       |      Freq. 

----------+----------- 

        0 |        415 

        1 |      1,092 

        2 |        120 

        3 |         55 

        4 |         25 

        8 |         33 

       15 |         11 

       60 |          3 

      120 |          2 

---------------------- 

 

Run the NBRM and store its estimates in a file for comparison to Poisson 

regression estimates: 

 

nbreg partners12 educ female black catholic south 

estimates store NBRM 
Negative binomial regression    Number of obs  = 1750 

                                 LR chi2(5)   = 90.72 

Dispersion     = mean            Prob > chi2 = 0.0000 

Log likelihood = -2800.3183      Pseudo R2   = 0.0159 

----------------------------------------------------- 

  partners12 |      Coef.   Std. Err.      z    P>|z| 

-------------+--------------------------------------- 

        educ |  -.0114919   .0106799    -1.08   0.282 

      female |  -.4540601   .0600383    -7.56   0.000 

       black |   .2800478   .0855524     3.27   0.001 

    catholic |  -.2263316   .0752474    -3.01   0.003 

       south |   .0878847   .0623771     1.41   0.159 

       _cons |   .6786853   .1557313     4.36   0.000 

-------------+--------------------------------------- 

    /lnalpha |  -.1981557   .0550963                  

-------------+--------------------------------------- 

       alpha |   .8202421   .0451923                  

----------------------------------------------------- 

Likelihood-ratio test of alpha=0:   

chibar2(01) = 2243.78 Prob>=chibar2 = 0.000 
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poisson partners12 educ female black catholic south 

estimates store PRM 

estimates table PRM NBRM, b(%9.3f) t label varwidth(32)  

                 drop(lnalpha:_cons) stats(alpha N) 
----------------------------------- 

   Variable |    PRM        NBRM 

------------+---------------------- 

       educ |    -0.017      -0.011 

            |     -2.39       -1.08 

     female |    -0.473      -0.454 

            |    -11.52       -7.56 

       race |     0.307       0.280 

            |      5.63        3.27 

   catholic |    -0.244      -0.226 

            |     -4.56       -3.01 

      south |     0.072       0.088 

            |      1.72        1.41 

   Constant |     0.761       0.679 

            |      7.49        4.36 

------------+---------------------- 

      alpha |                 0.820 

          N |      1750        1750 

----------------------------------- 

                        legend: b/t 

 

The corresponding parameter estimates for both models are close, but the 

t-test values for the NBRM are consistently smaller than the Poisson model. 

As discussed above, when overdispersion occurs, the Poisson standard 

errors are biased downward and the t-test values are inflated. 

 

When α = 0, the negative binomial equation is identical to the Poisson 

regression. Thus, comparing the two models’ results permits a one-tailed 

test of the overdispersion hypothesis: 

 

H0: α = 0 

H1: α > 0 

 

The test statistic “chibar2(01)” is at the bottom of the NBRM output. Its 

computation also requires the log likelihood for the corresponding Poisson 

model (which is -3922.21): 

 

G2 = 2(ln LNBRM – ln LPoisson) 

      = 2(-2800.32 – (-3922.21)) = 2243.78 
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Clearly the null hypothesis must be rejected! The conclusion is that 

overdispersion very likely occurs in the partners12; therefore the negative 

binomial regression model estimates are preferred to the Poisson 

estimates. 

 

As a general principle, count data should be analyzed by both Poisson 

regression and NBRM and alpha tested for overdispersion. If the null 

hypothesis is not rejected, report the Poisson regression results. It makes 

fewer assumptions than NBRM, which assumes a gamma-distributed error 

term. 

 

 

3. ZERO-INFLATED COUNT MODELS 

 

If the dependent variable has many zeros, if may be highly skewed. In such 

instances, NBRM is preferred to Poisson regression because of 

overdispersion. However, in the presence of enormous numbers of zeros, 

NBRM tends to under-predict zeros and hence not fit the data well. For 

example, number of arrests last year are mostly 0 for a sample of the 

general population. For such data structures, zero-inflated Poisson or 

NBRM are better. 

 

Zero-inflated count models assume two latent (unobserved) groups: (1) in 

the “Always Zero” group (Group A) individuals have a count of 0 with 

probability = 1 (i.e., certainty); (2) in the “Not Always Zero” group (Group -A) 

respondents may have a zero count  but have a nonzero probability of a 

positive count. For example, people with no computer spend 0 hours 

visiting Websites, but for people with computers, the hours may range from 

0 to 80 or more per week. Zero-inflate count models are estimates in three 

stages: the probability of being in Group A is modeled with a logit 

regression; the counts in Group -A are modeled with either a Poisson 

regression or NBRM; and the two groups are mixed according to their 

proportions in the population to determine the overall rate. 

 

In this example, the number of hours worked per week at 0 for people with 

no jobs, and recoded into 10-hour intervals for employed people: 

 

recode hrs1(0=0)(1/19=1)(20/29=2)(30/39=3)(40/49=4)(50/59=5) 

          (60/69=6)(70/79=7)(80/89=8), generate(hourswork) 

replace hourswork = 0 if (wrkstat > 2) 
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tabulation:  Freq.  Value 

               809  0 

                66  1 

               106  2 

               161  3 

               552  4 

               156  5 

               107  6 

                23  7 

                32  8 

                11  . 

 

To estimate a zero-inflated Poisson model or NBRM, the dependent variable 

is followed by the set of independent variables predicting the number of 

hours worked by Rs in the Not Always Zero group, then by a list of the 

inflation variables that predict whether R is in the Always Zero group. The 

sets of predictors can be identical but don’t have to be. 

 

zip hourswork educ age female black south catholic, 

          inflate(educ age female black south catholic) 
Zero-inflated Poisson regression   Number of obs =   1988 

                                   Nonzero obs   =   1190 

                                   Zero obs      =    798 

Inflation model = logit            LR chi2(6)    =  52.93 

Log likelihood  = -3333.374        Prob > chi2   =  0.000 

--------------------------------------------------------- 

   hourswork |      Coef.   Std. Err.        z      P>|z| 

-------------+------------------------------------------- 

hourswork    | 

        educ |   .0037302   .0053495       0.70     0.486 

         age |  -.0005563   .0011879      -0.47     0.640 

      female |  -.2168681   .0310574      -6.98     0.000 

       black |  -.0407135   .0454134      -0.90     0.370 

       south |   .0276841   .0318736       0.87     0.385 

    catholic |   .0066872   .0365337       0.18     0.855 

       _cons |   1.425691    .095506      14.93     0.000 

-------------+------------------------------------------- 

inflate      | 

        educ |  -.1088842   .0180589      -6.03     0.000 

         age |   .0482937    .003432      14.07     0.000 

      female |   .7739544   .1076439       7.19     0.000 

       black |  -.1761624   .1609218      -1.09     0.274 

       south |  -.0776404   .1124911      -0.69     0.490 

    catholic |  -.3512207   .1321932      -2.66     0.008 

       _cons |  -1.661118   .3189834      -5.21     0.000 

--------------------------------------------------------- 

 

Which variables predict R’s membership in the Always Zero group? Do they 

differ from the predictors of how many hours worked by Rs in the Not 

Always Zero group? 
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4. CENSORED REGRESSION 

 

Sometimes the distribution of a continuous dependent variable is censored. 

Information is not available about those cases having values above and/or 

below a particular threshold. All Rs are assigned the value of the threshold, 

even if some may be far above or below that value. For example, the 2008 

GSS records its highest income category as "$150,000 or over," which 

encompasses people earning precisely that amount and multimillionaires. 

 

Three types of censoring can occur, depending on where the threshold is 

located on the continuous dependent variable’s scale: 

 

1. Right-censored (upper limit): No precision among cases above the 

threshold (the income example above), or the threshold is an 

artificial constraint on higher values. “Attendance at Twins 

home games” is constrained by Target Field’s capacity of 

40,000 seats. 

 

2. Left-censored (lower limit): The lower threshold is a qualitative 

barrier to the continuous measure. "Price paid for automobile" 

is 0 for Rs who didn’t purchase a car. 

 

3. Double-censored: Both upper and lower thresholds exist. SAT and 

GRE scores are bounded between 200 and 800. 

 

Applying OLS regression to such dependent variables produces biased 

parameter estimates if the censored cases are excluded or are given an 

imputed value. To analyze censored data requires a multivariate model that 

explicitly takes the censored cases into account. 

 

Tobit analysis – more accurately, the censored regression model – is a 

multivariate method for limited dependent variables that permits unbiased 

parameter estimates by including the censored cases, while treating them 

differently from cases with observed variation. The method was proposed 

decades ago by James Tobin, a subsequent Nobel prize economist, and 

given the name "tobit" (for "Tobin's probit") by Arthur Goldberger.*  
___________________________________________________________________________ 
  

* Tobin, James. 1958. “Estimation of Relationships for Limited Dependent Variables." 

Econometrica 26:24-36. 

___________________________________________________________________________ 
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The tobit model predicts a "latent" (unobserved) value of a censored 

dependent variable as a linear function of one or more predictors, with a 

normally distributed error term: 

 

 iii Xy  *
  

 

The expected score of the ith observed case depends on whether it is an 

uncensored case: 

 

 iii bXyy  *ˆˆ   

 

or a censored case: 

 

 iiy 0ˆ    

 

The example below analyzes the 2008 GSS occupational prestige scores. 

About 40% of Rs were not in the labor force and could have been dropped. 

However, let’s include those cases by coding them 0 and designating them 

as left-censored in the tobit command. (If the cases are right-censored, use 

“ul(#)” to indicate the threshold value; for double-censoring, “ll(#)” and 

“ll(#)” are both used.) 

 

generate prest=prestg80 

replace prest=0 if (wrkstat >2) 

tobit prest educ age female black south catholic, ll(0) 
Tobit regression             Number of obs   =   1976 

                                LR chi2(6)   = 409.52 

                                Prob > chi2  = 0.0000 

Log likelihood = -6436.6167     Pseudo R2    = 0.0308 

----------------------------------------------------- 

       prest |      Coef.   Std. Err.      t    P>|t| 

-------------+--------------------------------------- 

        educ |   3.305408   .2798588    11.81   0.000 

         age |  -.7349894   .0512137   -14.35   0.000 

      female |  -12.19587   1.637457    -7.45   0.000 

       black |   1.430946   2.436438     0.59   0.557 

       south |   1.477284   1.720747     0.86   0.391 

    catholic |   5.215537   1.970816     2.65   0.008 

       _cons |   11.56908   4.829994     2.40   0.017 

-------------+--------------------------------------- 

      /sigma |   33.64138   .7722422                  

----------------------------------------------------- 

 Obs. summary: 798 left-censored obs  at prst<=0 

              1178 uncensored observations 

                 0 right-censored observations 
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Tobit coefficients are interpreted the same way as OLS regression 

coefficients. Which predictors increase or decrease the prestige of R’s job 

and by how many points per unit of X? 

 

The "sigma" coefficient at the bottom of the tobit output is the estimated 

standard error of the regression and is comparable to the root mean 

squared error in an OLS regression. However, some statisticians argue that 

it has no substantive interpretation. 


