
   

 

 

 

 

 

 

SOC 8811 ADVANCED STATISTICS 

LECTURE NOTES 

 

EVENT HISTORY ANALYSIS 
 

SPRING 2011 

 

Prof. David Knoke 

Sociology Department 

939 Social Sciences 

 

(612) 624-6816/4300 

knoke001@umn.edu 

 

 



   

TABLE OF CONTENTS 
 
 Event History Analysis 3 

 About the NLSY Data Set 9 

 Duration and Destination 12 

         The Life Table 16 

 Event History Models 27 

 The Exponential Model 31 

 Other Parametric Models 61 

 Semiparametic Models 73 

 Multiple Episodes & Destinations 79 

 References 84 

 

 



 

 

 

 

 3 

 EVENT HISTORY ANALYSIS 
 

This module is devoted to event history analysis (EHA), also known as 

survival analysis. Its origins lie in biostatistics and engineering, typically 

concerned with duration time until a single, nonreversible event: death from 

cancer; light bulb burnout. Software packages like Stata now make these 

methods relatively easy to apply.  Longitudinal data sets are proliferating, 

further promoting their use. 

 

 

INFERRING CAUSALITY 

 

Philosophers have pondered causality for millennia (Marini and Singer 

1988; Pearl 2000). Aristotle theorized four causes that answer the question 

“why?” in different ways: material, formal, efficient, and final causes.  Until 

the Enlightenment, scholars such as Aquinas tinkered within the 

Aristotelian causality framework. Scottish 

philosopher David Hume (1739) proposed a widely 

used modern definition of causality. He argued that 

cause and effect cannot be directly perceived, but is a 

mental habit or custom of mind that occurs when we 

come to associate two events as always contiguous 

and occurring one after another in the same 

sequential order. Hume listed eight ways of assessing 

whether two events might be cause and effect (e.g., 

“There must be a constant union betwixt the cause and effect. „Tis chiefly 

this quality, that constitutes the relation.”). For this course, I also assume 

that causal inference is a theory-guided intellectual activity by which a 

rational observer proposes an explanation for actions in the observable 

world: 

 

Causal Inference A process of careful reasoning from 

observational data to draw a conclusion about the association 

between two events where one event (the effect) is the consequence 

of the other (the cause).  

 

We use causal language daily in casual discourse (“The blizzard caused an 

increase in traffic accidents.”). However, scientific procedures for 
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establishing causality have been difficult to develop. Indeed, quantum 

mechanics disavows classical physics concepts of causality in its quest to 

explain how subatomic particles behave. At the level of human action, 

experimental designs can draw strong inferences about the effect of an 

independent variable on a dependent variable because rival factors can be 

held constant through random assignment of subjects to treatment and 

control groups. Great advances in natural science knowledge occurred 

over the past three centuries through experimental tests that pinpointed 

causal factors. Inferences about the causes of numerous diseases led to 

medical applications in public health policies, clinical practices, and 

hospital programs that greatly improved health and increased life spans in 

advanced and developing societies. Even nonexperimental evidence can be 

judiciously interpreted to identify cause-and-effect relations. A 

paradigmatic case was John Snow‟s demonstration that cholera outbreaks 

in 1850s London were caused by drinking contaminated well water, not by 

airborne “miasma” (Freedman 1991). Other prominent examples of 

nonexperimental causal inferences in the natural sciences include the Big 

Bang, biological evolution, and tectonic plates. 

 

For social science disciplines based heavily on such nonexperimental data 

as surveys and censuses, the confounding covariation among independent 

variables renders causal inferences difficult if not impossible. Successive 

generations of sociologists, political scientists, and economists sought to 

infer causal relations from patterns of statistical association using various 

multivariate models. The linear regression model for cross-sectional data 

was acclaimed as evidence of causation as early as Udny Yule‟s (1899) 

conclusion that providing income support outside the poorhouse increased 

the number of people on relief. Econometric models estimated regression 

equations to reveal how input factors of production, such as land, labor, 

and capital, cause economic outputs, such as growth and profits. In the 

1960s, Otis Dudley Duncan introduced sociologists to geneticist Sewell 

Wright‟s path analysis method for estimating effects (basically standardized 

regressions coefficients) in causal diagrams of intergenerational social 

mobility. (We‟ll exam this method in the structural equation model module.) 

Other methodologists argued that panel designs, where people are 

reinterviewed at regular intervals, are necessary to disentangle cross-

lagged effects among variables that change over time. More recent analysts 

advocate event history models as offering superior measures and methods 

for modeling dynamic social processes.  
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Establishing a cause-effect relation requires satisfying three criteria 

proposed by Hume: 

 

Covariation: The cause and its effect exhibit a systematic positive or 

inverse covariation of their observed values. For binary variables, 

when the cause is present, the effect occurs; in the absence of the 

cause, the effect does not happen. We‟re all familiar with the 

hackneyed phrase, “Correlation does not imply causation.” For 

example, tobacco companies argued that the statistical association 

between smoking and lung cancer does not “prove” that smoking 

causes cancer.  

 

Temporal Order: Causes must precede their effects in time (future events 

cannot affect past events, Terminator movies aside). Causation is not 

instantaneous, but involves some time lag between the causal event 

and its outcome effect. For example, a decrease in Summer rainfall 

may increase Fall corn prices, but high early-season corn prices 

cannot produce low late-season rainfall! Used alone, temporal order 

risks the fallacy of “post hoc ergo propter hoc” (“after this, therefore 

because of this”). The rooster crows, and thinks he made the sun 

come up. 

 

Exclusion of Alternatives: Other plausible explanations for the proposed 

cause-effect relation must be ruled out; e.g., by experimental 

randomization, or by holding other explanatory factors statistically 

constant. A spurious covariation may occur because the alleged 

cause and effect are both produced with some unobserved third 

variable. For example, ice cream sales and deaths by drowning 

covary during Summer; but both fluctuate with daily high 

temperatures. 

 

Event history analysis provides statistical techniques for meeting the three 

criteria. Blossfeld, Golsch and Rohwer (2007:24) caution that EHA model 

specification depends on good theoretical understanding about the 

“changing state of sociological knowledge in a field”: 

 

The crucial point in regard to causal statements is, however, that they 

need a theoretical argument specifying the particular mechanism of 
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how a cause produces an effect or, more generally, in which way 

interdependent forces affect each other in a given setting over time.  

 

Some subfields are more theoretically developed than others concerning 

causal relations among events (e.g., status attainment compared to social 

movements). Assuming that a theory generates plausible causal 

propositions, the next step in specifying an EHA model is to identify events 

that change. Events may involve discrete qualitative changes (dropping out 

of school) or continuous metric changes (weekly wages). Here are some 

examples of events from diverse substantive domains: 

 

EXs of personal life events: EXs of nonperson events: 

Completion of formal education 

Substance use/abuse 

Entry into paid labor force 

Age at first marriage 

Duration of marriage until divorce 

Single status until next marriage 

Childbirth, including parity intervals 

Promotion to higher-level job 

Length of time unemployed 

Organizational deaths 

Corporate mergers 

Hospitals adopt medical innovations 

Universities create/abolish colleges 

Cities change forms of government 

Congress creates federal agencies  

National revolutions 

Arms races erupt into wars 

 

 

A causal hypothesis can be expressed as an expectation about how a 

change in an independent variable (X) causes a change in a dependent 

variable (Y): 

)Pr( ttt YX 
 

 

A change in X at time t affects the probability of Y changing sometime after 

t. The conditions of X-Y covariation and time order are satisfied in this 

expression. Alternative explanations can excluded, at least partially, by 

including other possible important causes as independent variables. 

 

To estimate the magnitude and direction of cause X on effect Y, longitudinal 

data must measure the time(s) when qualitative and quantitative changes in 

variables occur. Multi-panel and retrospective life course surveys offer the 

best data collection designs for obtaining such data.
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BASIC EVENT HISTORY CONCEPTS 

 
STATE SPACE A small set of all possible qualitative (discrete) values that 

units of observation may enter or leave. Exit may occur 

from a transient state; an absorbing state allows no exit 

 

EVENT A transition between two states at a specific time. The 

event's hazard is the "dependent variable" in EHA 

 

COVARIATE Variables used to explain an event occurrence. Covariates 

are the "independent variables" or "predictors" in EHA 

 

EVENT HISTORY A longitudinal record of the times when events occur for 

the units of observation, including covariate values  

 

TIME A constant unit of measure in which events are recorded; 

units (e.g., days, years) must be consistent within an EHA 

 

EPISODE The time span that a unit of observation spends in a 

specific state (duration from start to finish) 

 

TIME-CONSTANT An independent  variable whose value for an individual  

COVARIATE case cannot change over time; EX: gender, race 

 

TIME-DEPENDENT An independent  variable whose value for an individual  

COVARIATE may change over time; EX: education, income  

  

RISK SET All cases susceptible/eligible to experience an event at a 

given time. EX: All married persons are at risk of divorce, 

but unmarried persons are not part of that risk set.  (See 

diagram next page.) 

 

CENSORED CASE A case whose time of an event is unknown.  Among the 

several types of censoring, two important ones are:  Right-

censored observations may have an event after the period 

of data collection.  Left-censored cases had the event prior 

to the data collection.  (See diagram next page) 

 

HAZARD RATE The propensity of an event to occur (a change from one  

(TRANSITION RATE) state to another), given that R is at-risk.  

A hazard rate is NOT A PROBABILITY because it doesn‟t  

have an upper bound of 1.00. 
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 The Time Line for Event History Analysis 

 

A four-panel survey collected data over observation period from t=0 to t=3. 

Thus, every respondent (R) could potentially complete four interviews and 

report about events occurring since the previous interview.  A solid line 

indicates that R has not experienced an event at that time (R remains in the 

origin state; e.g., unmarried).  An arrowhead indicates the time at which an 

event occurs (e.g., R gets married).  A filled circle means R disappeared 

from observation between survey waves (R refused to reinterview, couldn‟t 

find R, R died, etc.); thus, no information was collected about whether R 

experienced the event after the last interview. Rs whose possible event 

times cannot be ascertained are "censored" cases; censoring may occur on 

the right or left side of the observation period 

 

A & D are noncensored; events occur to Rs during the observation period 

B is right-censored; event occurs to R after data collection is completed 

C is left-censored; event occurs to R before data collection began   

E is right-censored; both R‟s start & end times fall after observation period 

F is right-censored; R vanishes before observation period is completed 

 

Below are the risk sets at the start of each period; Rs are at-risk of having 

the event. If censoring or the event occurs, R drops out of the next risk set.  

 

 {A,B,D,F} is the risk set at the start of t=0 and at t=1 

 {A,B} is the risk set at the start of t=2 

 {B} is the risk set at the start of t=3 

      t
0-2

       t
0-1

         t
0
        t

1
        t

2
        t

3
        t

k
 

 

A 

B 

C 

D 

E 

F 

 



 

 

 

 

 9 

 ABOUT THE NLSY97 DATA SET 
 

The 1997 National Longitudinal Survey of Youth (NLSY97) is one of several 

large annual panel surveys funded by the U.S. Labor Dept. and distributed 

by the Bureau of Labor Statistics.  Labor force activity is the main focus, 

but variables are available on job training, education, family formation, drug 

use, and other life events.  Some event times are recorded by day, others 

only annually.   

 

The NLSY97 cohort was born between 1980 and 1984 and were 12 to 18 

years old at the time of first interview in 1997. That initial round of 

interviews was conducted with 8,984  respondents.  This total breaks down 

into a cross-sectional sample of 6,748 respondents and a supplemental 

oversample of 2,236 Hispanic or Latino and black respondents. Only the 

NLSY97 cross-sectional sample is used in this module. 

 

The didactic dataset we analyze is a tiny extraction and restructuration from 

the massive file containing thousands of measures. It concentrates on a 

few major life course events: first cohabitation, first marriage, and first 

childbirth.  A codebook for this didactic version of NLSY97 can be 

downloaded from the SOC8811 Webpage.   

 

MEASURING TIME IN NLSY97 

 

Many of the times when an event occurs in the NLSY97 dataset are 

recorded as annual historical dates. Some variables representing a unique, 

nonrecurring event contain a four-digit number corresponding to the 

historic year when it happened, and those variable names reflect the 

content. For example,  the birth_yyyy, the respondent‟s year of birth has 

this distribution: 

 

table birth_yyyy 
---------------------- 

          |      Freq. 

----------+----------- 

     1980 |      1,258 

     1981 |      1,399 

     1982 |      1,371 

     1983 |      1,387 

     1984 |      1,333 

---------------------- 
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Other variables containing historic data are the year of R‟s first 

cohabitation (cohabit1_yyyy) and first marriage (marry1_yyyy). Because I 

analyze the latter in these Notes, here is its frequency distribution: 

 

table marry1_yyyy 
---------------------- 

RECODE of | 

marry1    |      Freq. 

----------+----------- 

        0 |      4,621 

     1995 |          1 

     1996 |          1 

     1997 |         12 

     1998 |         29 

     1999 |         61 

     2000 |        104 

     2001 |        167 

     2002 |        174 

     2003 |        236 

     2004 |        261 

     2005 |        299 

     2006 |        278 

     2007 |        255 

     2008 |        216 

---------------------- 

 

Importantly, Rs who do not marry are coded as 0, not as missing values. 

That information is useful below. (I discovered that, because some 

interviews for the final survey panel occurred in early 2009, four Rs were 

actually married in 2009; I recoded those dates to 2008 to avoid 

complications.) 

 

Other NLSY97 variables implicitly involving historical time are measures 

collected at each annual interview, which may change their values from one 

year to the next. Such measures appear in a set of 12 adjacent variables 

whose names indicate the year when R‟s value was recorded. For example, 

the series educ1997 to educ2008, contain valid numbers from 0 to 20 for the 

number of years of schooling completed at the time of the interview. I show 

in sections below how to use such series to measure changes over time in 

R‟s education level. 

   

An extremely important historical date for the NLSY97 and any other 

longitudinal dataset is the time of R‟s last interview. Although every 

respondent was interview in 1997, not all of them participated in the next 11 

interviews from 1998 to 2008. Some died or moved without a forwarding 

address, others were overseas, in jail, or just refused to be reinterviewed. 
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To determine which persons experienced early right-censoring 

(disappeared from the study before the 2008 interview), I used a set of 11 

annual interview indicators – intv98 to intv08 – that record whether R was a 

noninterviewee that year (cases coded -5 are the noninterviews). If R‟s 

value is not -5 for a specific year, then he or she was interviewed that year. I 

used the following Stata commands to create a new variable lastintv_yyyy, 

which has the four-digit year of R‟s final interview: 

 

generate lastintv_yyyy=1997 

replace lastintv_yyyy=1998 if intv98 ~=-5 

replace lastintv_yyyy=1999 if intv99 ~=-5 

replace lastintv_yyyy=2000 if intv00 ~=-5 

replace lastintv_yyyy=2001 if intv01 ~=-5 

replace lastintv_yyyy=2002 if intv02 ~=-5 

replace lastintv_yyyy=2003 if intv03 ~=-5 

replace lastintv_yyyy=2004 if intv04 ~=-5 

replace lastintv_yyyy=2005 if intv05 ~=-5 

replace lastintv_yyyy=2006 if intv06 ~=-5 

replace lastintv_yyyy=2007 if intv07 ~=-5 

replace lastintv_yyyy=2008 if intv08 ~=-5 

 

table lastintv_yyyy 
---------------------- 

lastintv_ | 

yyyy      |      Freq. 

----------+----------- 

     1997 |        103 

     1998 |         46 

     1999 |         55 

     2000 |         61 

     2001 |         75 

     2002 |         90 

     2003 |        108 

     2004 |        114 

     2005 |         93 

     2006 |        191 

     2007 |        252 

     2008 |      5,560 

---------------------- 

 

The huge majority (5,560 of the 6,748 Rs) participated in all 12 interviews, 

but many dropped out each year. The lastintv_yyyy variable is stored in the 

version of NLSY97 you will use, so you do not need to reconstruct it for the 

assignment. I presented  commands above as a reference for any EHA 

analysis you may conduct in the future. 
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DURATION AND DESTINATION 
 

Two crucial pieces of information about respondents are necessary to 

perform an event history analysis. We need to know duration, for how long 

each R is at-risk of an event during the observation period; and destination, 

whether an event happens to R during the observation period. EHA 

programs generally cannot analyze durations where time is recorded in 

historical dates. In the examples in these Notes, I show how to transform 

(recode) the historical dates in the NLSY97 dataset into time measures that 

Stata can use in its EHA programs.  

 

DURATION 

 

I concentrate on a single event – the NLSY97 respondents' first marriages. 

The state space has two values: unmarried and married. At the beginning of 

the observation period in 1997, almost all respondents are in the unmarried 

state (12 married that year and one each in 1996 and 1995). For some Rs, 

their unmarried episode ends with a transition into the married state, while 

other Rs do not leave the origin state before the end of the observation 

period (i.e., they remain unmarried until their final interview). To calculate 

the duration unmarried for each R requires information about when R‟s 

marital episode begins and ends: (1) tstart, the time when R entered the 

unmarried state and (2) tend, the time when the marriage event or the final 

observation occurred. When time information is initially stored as historical 

dates, we have to recode them into a new timeline usable by Stata EHA 

programs.  

 

Ideally tstart will have a meaningful value of 0, rather than an arbitrary one. 

For the NLSY97 data, we could recalibrate the historical birth dates to the 

beginning of the observation period in 1997. But, by that date some Rs had 

already been at-risk five years longer than others (e.g., 17-year-olds versus 

13-year-olds). Another possibility would be to start the clock at the legal 

age of marriage (which varies across the U.S. states), or at the youngest 

age when a NLSY97 marriage occurs (13 years). However, many 

demographers are interested in knowing how old people are when they 

marry for the first time, so a reasonable transformation is to use each R‟s 

birth year as the starting value (i.e., age 0). This command sets the tstart to 

age 0 for everyone: 
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generate tstart = 0 

 

A respondent‟s age at tend is either (1) the age at last interview if R is 

unmarried; or (2) the age at first marriage if R gets married. To obtain one 

of these two values for an R, we must transform historical dates into ages. 

 

1. For an unmarried R, tend is either 2008 if R remains unmarried all 12 

years, or the year of right-censoring if an unmarried R does not 

complete all 12 interviews. These historical dates are stored in 

lastintv_yyyy. 

 

2. For R who marries, the historical date is stored in marry1_yyyy. 

 

The sequence of the following two Stata commands is very important, 

because it replaces the initial assignment of age at lastintv_yyyy with age at 

marry1_yyyy only if R gets married. (Can you explain why reversing the 

sequence would produce erroneous data?)  

 

First, calculate R‟s age at the last interview: 

 

generate tend = lastintv_yyyy – birth_yyyy 

 

table tend 
---------------------- 

     tend |      Freq. 

----------+----------- 

       13 |          9 

       14 |         24 

       15 |         35 

       16 |         50 

       17 |         68 

       18 |         74 

       19 |         74 

       20 |        101 

       21 |         87 

       22 |        134 

       23 |        178 

       24 |      1,231 

       25 |      1,293 

       26 |      1,216 

       27 |      1,158 

       28 |      1,016 

---------------------- 
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Second, if R has a nonzero year of marriage, then replace tend with R‟s age 

at first marriage. As a result, tend is now the age of R at which either a first 

marriage or right-censoring occurs. 

 

replace tend = (marry1_yyyy – birth_yyyy)  if marry1_yyyy > 0 
(1875 real changes made, 33 to missing) 
 

---------------------- 

     tend |      Freq. 

----------+----------- 

       13 |         10 

       14 |         24 

       15 |         39 

       16 |         57 

       17 |         98 

       18 |        158 

       19 |        221 

       20 |        319 

       21 |        355 

       22 |        376 

       23 |        435 

       24 |      1,226 

       25 |      1,136 

       26 |        944 

       27 |        718 

       28 |        599 

---------------------- 

 

Third, subtract the ending and starting ages to obtain durmar1, the duration 

in years when R is at-risk of a first marriage. 

 

generate durmar1 = tend – tstart 
(33 missing values generated) 
 

---------------------- 

  durmar1 |      Freq. 

----------+----------- 

       13 |         10 

       14 |         24 

       15 |         39 

       16 |         57 

       17 |         98 

       18 |        158 

       19 |        221 

       20 |        319 

       21 |        355 

       22 |        376 

       23 |        435 

       24 |      1,226 

       25 |      1,136 

       26 |        944 

       27 |        718 

       28 |        599 

---------------------- 
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Variable durmar1 is duration of R in the unmarried state (i.e., at-risk of a 

first marriage), from age 0 until the age at which either marriage or right-

censoring occurs. 

 

DESTINATION 

 

The second piece of information we need for EHA is whether R changes 

from the initial unmarried state to the first-marriage state during the 

observation period. That information can be extracted from the 

marry1_yyyy variable, which has the historical year of first marriage or 0 if R 

never marries. Just create a binary variable for the two marital state space 

values, desmar1 (for “destination marry1”), by copying marry1_yyyy into a 

new variable and collapsing all the historical marriage dates into “1”. 

 

recode marry1_yyyy (0=0)(1995/2008=1), generate(desmar1) 
------------------------ 

    desmar1 |      Freq. 

------------+----------- 

          0 |      4,621 

          1 |      2,094 

------------------------ 

 

We now have both pieces of information required for EHA. This crosstab 

shows the joint distribution of duration and destination in NLSY97: 

 

table durmar1 desmar1 
---------------------- 

          | desmar1    

  durmar1 |    0     1 

----------+----------- 

       13 |    9     1 

       14 |   24       

       15 |   35     4 

       16 |   50     7 

       17 |   68    30 

       18 |   73    85 

       19 |   71   150 

       20 |   93   226 

       21 |   82   273 

       22 |  118   258 

       23 |  147   288 

       24 |  944   282 

       25 |  917   219 

       26 |  789   155 

       27 |  638    80 

       28 |  563    36 

---------------------- 
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 THE LIFE TABLE 
 

One of the earliest, and still most useful, survival analysis techniques is the 

life table, a mainstay of demographers and actuaries. (It‟s also called a 

“mortality table” because it shows the chances of death at specific times.)  

A careful examination of the life table illustrates many of the basic concepts 

and their empirical calculation. 

 

Stata must first be informed that the dataset consists of a single-record 

event history data. That task is accomplished by submitting the command 

“stset” before running the life table command: 

 

stset  

ltable durmar1 desmar1, survival failure hazard 

 

durmar1 is the duration, in years since birth, of R remaining 

unmarried until R either has a first marriage or is right-censored  

desmar1 is a binary state variable where 0 = unmarried, 1 = married 

survival failure hazard requests computation of the survival function, 

cumulative failure, and hazard rates, respectively 

 

Stata automatically creates four new variables in the file: 

 
_t0  analysis time when the record begins 

_t analysis time when the record ends 

_d 1 = failure, 0 = censored 

_st 1 = record is used, 0 = record is ignored 

 

Many survival analysis programs assume the origin state is preferred (e.g., 

the transition to “death” is an undesirable event in a disease episode).  

Hence, “Survival” in this example refers to persons who remain unmarried 

(i.e., right censored), while “Hazard” refers to becoming married for the first 

time. Make whatever substantive interpretations about marriage you wish! 

 

The life table output appears in three panels on the next page. I show below 

how to calculate the values displayed for the 20-21 year interval. Recall that 

every R‟s age was increased by one year when durmar1 was calculated 

above. Adding that constant had no impact on the survival, failure, and 

hazard rates presented below. 
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                 Beg.                                 Std. 

   Interval     Total   Deaths   Lost    Survival    Error     [95% Conf. Int.] 

------------------------------------------------------------------------------- 

   13    14      6715        1      9     0.9999    0.0001     0.9989    1.0000 

   14    15      6705        0     24     0.9999    0.0001     0.9989    1.0000 

   15    16      6681        4     35     0.9993    0.0003     0.9982    0.9997 

   16    17      6642        7     50     0.9982    0.0005     0.9968    0.9990 

   17    18      6585       30     68     0.9936    0.0010     0.9914    0.9953 

   18    19      6487       85     73     0.9805    0.0017     0.9769    0.9836 

   19    20      6329      150     71     0.9572    0.0025     0.9519    0.9618 

   20    21      6108      226     93     0.9215    0.0034     0.9146    0.9278 

   21    22      5789      273     82     0.8777    0.0041     0.8694    0.8855 

   22    23      5434      258    118     0.8356    0.0047     0.8262    0.8445 

   23    24      5058      288    147     0.7873    0.0052     0.7769    0.7973 

   24    25      4623      282    944     0.7338    0.0057     0.7224    0.7449 

   25    26      3397      219    917     0.6791    0.0064     0.6664    0.6915 

   26    27      2261      155    789     0.6227    0.0073     0.6083    0.6368 

   27    28      1317       80    638     0.5728    0.0086     0.5558    0.5894 

   28    29       599       36    563     0.5079    0.0127     0.4827    0.5325 

------------------------------------------------------------------------------- 

 

                 Beg.                      Cum.       Std. 

   Interval     Total   Deaths   Lost    Failure     Error     [95% Conf. Int.] 

------------------------------------------------------------------------------- 

   13    14      6715        1      9     0.0001    0.0001     0.0000    0.0011 

   14    15      6705        0     24     0.0001    0.0001     0.0000    0.0011 

   15    16      6681        4     35     0.0007    0.0003     0.0003    0.0018 

   16    17      6642        7     50     0.0018    0.0005     0.0010    0.0032 

   17    18      6585       30     68     0.0064    0.0010     0.0047    0.0086 

   18    19      6487       85     73     0.0195    0.0017     0.0164    0.0231 

   19    20      6329      150     71     0.0428    0.0025     0.0382    0.0481 

   20    21      6108      226     93     0.0785    0.0034     0.0722    0.0854 

   21    22      5789      273     82     0.1223    0.0041     0.1145    0.1306 

   22    23      5434      258    118     0.1644    0.0047     0.1555    0.1738 

   23    24      5058      288    147     0.2127    0.0052     0.2027    0.2231 

   24    25      4623      282    944     0.2662    0.0057     0.2551    0.2776 

   25    26      3397      219    917     0.3209    0.0064     0.3085    0.3336 

   26    27      2261      155    789     0.3773    0.0073     0.3632    0.3917 

   27    28      1317       80    638     0.4272    0.0086     0.4106    0.4442 

   28    29       599       36    563     0.4921    0.0127     0.4675    0.5173 

------------------------------------------------------------------------------- 

 

                 Beg.     Cum.     Std.                Std. 

   Interval     Total   Failure   Error    Hazard     Error    [95% Conf. Int.] 

------------------------------------------------------------------------------- 

   13    14      6715    0.0001  0.0001    0.0001    0.0001    0.0000    0.0004 

   14    15      6705    0.0001  0.0001    0.0000         .         .         . 

   15    16      6681    0.0007  0.0003    0.0006    0.0003    0.0000    0.0012 

   16    17      6642    0.0018  0.0005    0.0011    0.0004    0.0003    0.0018 

   17    18      6585    0.0064  0.0010    0.0046    0.0008    0.0029    0.0062 

   18    19      6487    0.0195  0.0017    0.0133    0.0014    0.0104    0.0161 

   19    20      6329    0.0428  0.0025    0.0241    0.0020    0.0203    0.0280 

   20    21      6108    0.0785  0.0034    0.0380    0.0025    0.0330    0.0429 

   21    22      5789    0.1223  0.0041    0.0487    0.0029    0.0429    0.0544 

   22    23      5434    0.1644  0.0047    0.0492    0.0031    0.0432    0.0552 

   23    24      5058    0.2127  0.0052    0.0595    0.0035    0.0526    0.0664 

   24    25      4623    0.2662  0.0057    0.0703    0.0042    0.0621    0.0785 

   25    26      3397    0.3209  0.0064    0.0774    0.0052    0.0672    0.0877 

   26    27      2261    0.3773  0.0073    0.0866    0.0070    0.0730    0.1003 

   27    28      1317    0.4272  0.0086    0.0835    0.0093    0.0652    0.1018 

   28    29       599    0.4921  0.0127    0.1202    0.0200    0.0810    0.1594 

------------------------------------------------------------------------------- 
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INTERPRETING THE FIRST MARRIAGE LIFE TABLE 

 

The first two columns of the first panel above show the Interval‟s lower and 

upper bounds. The interval time i begins at the lower value but does not 

include the upper value.  The row 20-21 includes people who were at risk 

during their 20th year but not on the day they turned 21. The table shows 

that no NLSY97 first marriage occurred before age 13-14. 

 

In the third column, the Beginning Total shows the number of Rs at risk of 

marriage at the start of the ith interval. At age 13, all 6,715 cases are still at 

risk. The number at risk in interval i is calculated: 

 

111 =   iiii ZENN   

 

where Ei is the number of marital events (“Deaths”) reported in the fourth 

column and Zi is the number of right-censored cases (“Lost”) in the fifth 

column. For example, the Beginning Total at interval 20-21 is: 

 

Ni = 6329 - 150 - 71 = 6108 
 

Assuming that censored cases are evenly distributed within each interval 

(across one year in this example), the adjusted number of persons at risk in 

interval i  (i.e., the risk set) is calculated: 

 

iii ZNR 5.0 = ˆ    

 

This value is not shown in the output. Because we cannot know whether a 

censored R got married, by convention only half the right-censored cases 

are presumed to be at-risk during the interval when they vanished. In the 

example, the adjusted number at risk at the start of interval 20-21 is: 

 

 = ˆ
iR 6108 – (0.5)(93) = 6061.5 

 

The conditional probability of failure is the probability of having the event 

during an interval, given that R survived until that time. For interval i, the 

conditional probability of failure is calculated: 
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i

i
i

R

E
q

ˆ
 = ˆ

 

 

For interval 20-21, the conditional probability of marriage is: 

 

0373.0
5.6061

226
 = ˆ iq  

 

The conditional probability of no event is the complement of the conditional 

probability of failure (i.e., the binary probabilities sum to 1.00): 

 

ii qp ˆ1 = ˆ   

For interval 20-21, the conditional probability of nonmarriage is: 

 

9627.00373.01 = ˆ ip  

 

Using the estimated conditional probability of failure, the Survival function 

in column 6 is calculated as the cumulative product of these estimates 

across successive interval: 

 

021

0

ˆ...ˆˆ = ˆ

1= ˆ

pppS

S

tti 

 

 

where the Survival value before any event occurs is 1.00 (i.e., the entire 

sample survives until interval 13-14). The Survival value for interval 20-21, is 

the product of 10 conditional probabilities of failure: 

 

9214721.

)9627155)(.9761659)(.9868227)(.9954205(.

)9989421)(.9993997)(.00.1)(9999851)(.00.1( = ˆ
20



S
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Slightly more than 92% of the sample survived unmarried until the start of 

the 20-21interval. 

 

The standard error of each Survival estimate permits computation of the 

lower and upper limits of the 95% confidence intervals (last three columns). 

 

The last four columns of the second output panel above show the Cum. 

Failure estimates, with standard errors and confidence limits. The 

cumulative failure is the just the complement of the Survivor estimate: 

 

ii SF ˆ1ˆ   

 

Finally, column 6 of the third panel above shows the hazard function for the 

event for each interval. The calculate is: 

 

 
ii

i

ii

i
ER

E
h

5.0ˆ

1
 = ˆ

1    

 

where the denominator of the first component is the duration of the interval. 

In the marriage example, it is 1 year, so it makes no adjustment to the 

second component. However, it would apply whenever the intervals have 

been group to represent wider durations than the original times units; for 

example, if time in days is grouped into 30-day months, the difference 

between one interval and the next is 30. For the 20-21interval, the marital 

hazard is: 

 

0379928.0
5.5948

226

)226(5.05.6061

226
 = ˆ

20 


h
 

 

This hazard can be interpreted as the rate at which marriage occurs for 

those people who survived unmarried until the beginning of the 20-21 

interval. More on the hazard rate in the next section. 

 

What pattern do you observe for changes in the hazard rate across the full 

age range of the NLSY97 sample? 
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LIFE TABLE GRAPHS 

 

Life tables can be difficult to interpret, but graphing their values can reveal 

insightful patterns. Stata‟s command to plot the survival curve: 

 

ltable durmar1 desmar1, graph survival 

 

.5
.6

.7
.8

.9
1

P
ro

p
o
rt

io
n
 S

u
rv

iv
in

g

15 20 25 30
durmar1

 
 

Cumulative survival plots always decrease over time because entering a 

first marriage is a one-way transition. The proportional unmarried remained 

just above 0.50 by the end of the observation period. Because the 

cumulative failure plot is the inverse of the survival graph, I did not run it. 
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Life tables can be useful for comparing the survival and hazard rate 

patterns of groups. This command produces separate tables of the survival 

function for men and women: 

 

ltable durmar1 desmar1, survival by(sex) 
                 Beg.                                 Std. 

   Interval     Total   Deaths   Lost    Survival    Error     [95% Conf. Int.] 

------------------------------------------------------------------------------- 

Male 

   13    14      3444        0      2     1.0000    0.0000          .         . 

   14    15      3442        0     10     1.0000    0.0000          .         . 

   15    16      3432        0     20     1.0000    0.0000          .         . 

   16    17      3412        1     23     0.9997    0.0003     0.9979    1.0000 

   17    18      3388        3     40     0.9988    0.0006     0.9968    0.9996 

   18    19      3345       16     32     0.9940    0.0013     0.9907    0.9961 

   19    20      3297       49     41     0.9791    0.0025     0.9737    0.9835 

   20    21      3207       80     47     0.9545    0.0036     0.9468    0.9612 

   21    22      3080      110     46     0.9202    0.0048     0.9103    0.9290 

   22    23      2924      129     77     0.8791    0.0058     0.8673    0.8899 

   23    24      2718      134     89     0.8350    0.0066     0.8216    0.8475 

   24    25      2495      139    522     0.7830    0.0075     0.7679    0.7974 

   25    26      1834      106    509     0.7305    0.0086     0.7133    0.7469 

   26    27      1219       85    425     0.6688    0.0101     0.6485    0.6882 

   27    28       709       38    345     0.6214    0.0120     0.5975    0.6444 

   28    29       326       23    303     0.5395    0.0190     0.5015    0.5760 

Female 

   13    14      3271        1      7     0.9997    0.0003     0.9978    1.0000 

   14    15      3263        0     14     0.9997    0.0003     0.9978    1.0000 

   15    16      3249        4     15     0.9985    0.0007     0.9963    0.9994 

   16    17      3230        6     27     0.9966    0.0010     0.9939    0.9981 

   17    18      3197       27     28     0.9881    0.0019     0.9837    0.9914 

   18    19      3142       69     41     0.9663    0.0032     0.9594    0.9720 

   19    20      3032      101     30     0.9340    0.0044     0.9247    0.9421 

   20    21      2901      146     46     0.8866    0.0057     0.8749    0.8972 

   21    22      2709      163     36     0.8329    0.0067     0.8192    0.8456 

   22    23      2510      129     41     0.7897    0.0074     0.7749    0.8037 

   23    24      2340      154     58     0.7371    0.0080     0.7210    0.7524 

   24    25      2128      143    422     0.6821    0.0086     0.6649    0.6987 

   25    26      1563      113    408     0.6254    0.0094     0.6066    0.6435 

   26    27      1042       70    364     0.5745    0.0104     0.5538    0.5946 

   27    28       608       42    293     0.5222    0.0122     0.4980    0.5458 

   28    29       273       13    260     0.4747    0.0168     0.4415    0.5072 

------------------------------------------------------------------------------- 

 

What survival differences do you observe between the gender? What is 

your sociological explanation? 
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The two survival curves can be graphed together: 

 

ltable durmar1 desmar1, by(sex) graph overlay 
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Are the gender differences in survival clearer here than in the life tables? 

 
Another method for estimating the survivor function is the product-limit, also 

called the Kaplan-Meier method. It calculates the risk-set at every time where at 

least one event occurred. Use these three commands to calculate the Kaplan-

Meier survival function by sex. Output from the first two commands is not shown; 

the third command plots the graph: 

 

sts list, by(sex) 

stset durmar1, failure(desmar1) 

sts graph, by(sex) 
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COMPARING SURVIVOR FUNCTIONS 

 

Four test statistics are available to compare two or survivor functions, all 

based on the product-limit estimates. The four tests follow a chi-square 

distribution with m-1 degrees of freedom. The null hypothesis is that the 

survivor functions do not differ. You may recall that a test with one degree 

of freedom requires a chi-square test statistic ≥ 3.84 to reject the null 

hypothesis at p < .05. 

 

This command runs the log-rank test for the sex dichotomy: 

 

sts test sex, logrank 
Log-rank test for equality of survivor functions 

       |   Events         Events 

sex    |  observed       expected 

-------+------------------------- 

Male   |       913        1117.72 

Female |      1181         976.28 

-------+------------------------- 

Total  |      2094        2094.00 

             chi2(1) =      84.61 

             Pr>chi2 =     0.0000 

 

The Wilcoxon –Breslow-Gehan test: 

 

sts test sex, wilcoxon 
Wilcoxon (Breslow) test for equality of survivor functions 

       |   Events         Events        Sum of 

sex    |  observed       expected        ranks 

-------+-------------------------------------- 

Male   |       913        1117.72     -1183821 

Female |      1181         976.28      1183821 

-------+-------------------------------------- 

Total  |      2094        2094.00            0 

             chi2(1) =     109.98 

             Pr>chi2 =     0.0000 

 

The Taron-Ware test: 

 

sts test sex, tware 
Tarone-Ware test for equality of survivor functions 

       |   Events         Events        Sum of 

sex    |  observed       expected        ranks 

-------+-------------------------------------- 

Male   |       913        1117.72    -15537.32 

Female |      1181         976.28     15537.32 

-------+-------------------------------------- 

Total  |      2094        2094.00            0 

             chi2(1) =     100.40 

             Pr>chi2 =     0.0000 
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And the Peto-Peto-Prentice test: 

 

sts test sex, peto 
Peto-Peto test for equality of survivor functions 

       |   Events         Events        Sum of 

sex    |  observed       expected        ranks 

-------+-------------------------------------- 

Male   |       913        1117.72   -182.38714 

Female |      1181         976.28    182.38714 

-------+-------------------------------------- 

Total  |      2094        2094.00            0 

             chi2(1) =     100.76 

             Pr>chi2 =     0.0000 

 

 

Clearly, all four test results agree that we must reject the null hypothesis at 

p < .001, with a very much smaller probability of making a false rejection 

(Type I) error. The male and female survivor plots very likely differ in the 

population, with men surviving unmarried more than women at every age. 
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 EVENT HISTORY MODELS 
 

Beyond describing survival and hazard functions, we seek to explain their 

variation as a function of independent variables. Because the exponential 

model is the simplest parametric model, and is often estimated as a 

baseline for comparing alternative models, I begin with it after discussing 

the hazard rate. Subsequent sections examine other parametric and 

semiparametric models. 

 

THE HAZARD RATE AS "DEPENDENT VARIABLE" 

 

A unit of observation, such as a person or organization, occupies a discrete 

state on a dependent variable, Yt, at a specific time t. A unit may change 

from its origin state j at time 0, Yt0,  to a destination state k at some later 

time (t > t0). If the state space is dichotomous and all units start in the same 

origin state, then the only possible transition is the single destination state. 

In the NLSY97 example, every R begins in the unmarried state and some 

change to the married state between birth and the end of the observation 

period. 

 

The crucial concept for describing the change process is the hazard rate in 

continuous time (a.k.a. transition rate, failure rate, incidence rate, risk 

function, etc.). Let a random time variable, T, represents the duration, 

beginning from time t0 until a change from origin state j to destination state 

k occurs. Assuming that t0 = 0, then the probability can be defined: 

 

tttTtT  ')|Pr(t'  

 

Read this expression as “the probability that an event occurs sometime 

within the time interval from t to t’, given that the event did not event 

occurred before t” (i.e., in the preceding interval from 0 to t). If a unit of 

observation experiences an event (e.g., got married) before t, it has been 

removed from the risk set of cases on which the probability is calculated. 

 

Now let the interval from t to t’ approach 0 (i.e., it shrinks closer and closer 

to zero). As this interval approaches zero, the probability of the event also 

approaches zero (think nanoseconds, when an event is very-very-very 
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unlikely to happen!). This process means that, as the interval collapses 

toward zero, the limit of the probability equals zero: 

 

0)|Pr(t' lim
t'




tTtT
t

 

 

Visualize the limit process on a timeline where the interval between the 

lower and upper times grows infinitesimally smaller (with t‟ moving to the 

left), yet T still remains inside that incredible shrinking interval: 

 

                                                     T 

   

        t0                      t              t‟ 

 

To avert a zero probability for all events, the ratio of the probability to the 

width of the time interval represents the probability of a change from origin 

state to destination state per unit of time: 

 

)'(

)|Pr(t'

tt

tTtT




 

  

The hazard rate at time t is defined as limit of this ratio:  

 

 )'(

)|Pr(t'
 = h(t) lim

' tt

tTtT

tt 




  

 

Other commonly used symbols for the hazard are λ (t) and r(t). Blossfeld et 

al. (2007:32) use the latter symbol and refer to it as the transition rate. 

 

Hazard rate interpretation: 

 

Despite temptations to interpret the hazard rate as an instantaneous 

probability of an event occurrence, it‟s not a probability because, although 

it cannot be negative, it has no upper bound. An empirical estimate of a 

hazard might even be larger than 1.00! Suppose events can be repeated 

(e.g., changing jobs) and the unit of time used to estimate the hazard is 
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longer than the typical frequency of job changing (e.g., one year). Thus, an 

estimated h(t) = 2.25 would be interpreted that the expected number of job 

changes is two and a quarter per year (not implausible for high school and 

college students). Further, the expected time until an event occurs can be 

estimated as the inverse of the hazard rate: E(T) = 1/h(t). In the example, 

E(T) = 1/2.25 = 0.44 means that job changes are expected to occur every 

0.44 years (i.e., every 23.1 weeks). 

 

Blossfeld et al. (2007:33) wrote, “We interpret r(t) as the propensity to 

change the state, from origin j to destination k, at t.” Unfortunately, the 

italicized word has no precise meaning and efforts by other authors to give 

verbal interpretations of the mathematical expression above are similarly 

imprecise. The safest route is to avoid using the word “probability” 

altogether when discussing hazards. 

 

Relation to other distribution functions: 

 

The hazard rate is intimately related to both the survivor function that we 

examined above for the life table and to the probability density function. 

Thus, you can express one function in terms of another. 

 

The probability density function, F(t), which defines the proportion of the 

sample that has experienced the event up to time t, is: 

     (u) -= )Pr()(
0

dtfTttF

T

t




  

F(t) in terms of the hazard function, is: 

 














 du  h(u) - exp h(t) =)(

t

0

tF  

 

In terms of the hazard function, the survivor function is: 

 

S(t)  =  exp -  h(u) du
0

t











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Can you show how to express the hazard function in terms of the other 

two; i.e., show that h(t) = F(t) / S(t)? (Hint: substitute S(t) from the third 

equation into the second equation, then simplify.)  

 

The main point is that the hazard rate and the survivor function are inverses 

of one another. Some EHA computer programs model the hazard rate and 

other model the survivor function, which means the independent variable 

effects will have opposite signs. Be sure to understand which function is 

estimated by any program you use. 

 

Including independent variables in hazard rate models: 

 

Generic hazard models closely resemble multivariate regression and 

logistic models previously studied. One or more independent variables, or 

predictors, are included. Most event history/survival refer to these variables 

as "covariates." 

 

The expected natural log of the hazard is a linear function of the covariate 

parameters times the individual respondent's variable values: 

 

ln h(t) = α + β1 X1 + β2 X2 +  ...  + βk Xk 
 

An equivalent expression "unlogs" the expected hazard by exponentiating 

both sides: 

 

 exp (ln h(t))  =  exp ( X X ... X )1 1 2 2 k k         

 

and, because exponentiation “cancels” a logarithmic transformation: 

 

 h(t)  =  e 1 1 2 2 k kX X X      
  

 

Note the similarity of this latter expression to the exponentiated logistic 

regression equation format, in which h(t) is replaced by the odds (p1/p0). 

 

Most EHA computer programs compute and print both sets of parameter 

estimates. More later on testing and interpreting them. 
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THE EXPONENTIAL RATE MODEL 

 

The exponential rate model assumes that the hazard rate h(t) into the 

destination state k can vary with differing combinations of the covariates 

but is time-constant: h(t) = h. A graph of an exponential hazard rate over 

time looks like this: 

 

 

 
 

 

An exponential model has no memory: duration in the origin state depends 

only on the present, not on the past. The exponential model is estimated 

using maximum likelihood methods.  

 

In this section I show how to use Stata to estimate four versions of an 

exponential model for first marriage: (1) with no covariates; (2) with a time-

constant covariation; (3) with a qualitative time-dependent covariate; and 

(4) with a quantitative time-dependent covariate. 
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(1) First marriage with no covariates: 

 

The initial exponential model for first marriage has no independent 

variables, so it only analyzes the average marital behavior of the NLSY97 

respondents. The model to be estimated is: 

 

h(t) = h = exp(α) 

 

Define the dataset as single-episode data with the “stset” command: 

 

stset durmar1, failure(desmar1) 
     failure event:  desmar1 != 0 & desmar1 < . 

obs. time interval:  (0, durmar1] 

 exit on or before:  failure 

 

------------------------------------------------------------------------------ 

     6748  total obs. 

       33  event time missing (durmar1>=.)                      PROBABLE ERROR 

------------------------------------------------------------------------------ 

     6715  obs. remaining, representing 

     2094  failures in single record/single failure data 

   161310  total analysis time at risk, at risk from t =         0 

                             earliest observed entry t =         0 

                                  last observed exit t =        28 

 

In the Stata command “streg”, use option “nohr” (no hazard ratio) to obtain 

coefficients when the log-hazard is the dependent variable. To obtain the 

parameters for the hazard ratio as the dependent variable, omit the “nohr” 

option. But, with no independent variables, no hazard ratio will be 

estimated. 

 

streg, distribution(exponential) nohr 
         failure _d:  desmar1 

   analysis time _t:  durmar1 

Iteration 0:   log likelihood = -4687.2366   

Iteration 1:   log likelihood = -4687.2366   

Exponential regression -- log relative-hazard form  

No. of subjects =         6715                     Number of obs   =      6715 

No. of failures =         2094 

Time at risk    =       161310 

                                                  LR chi2(0)      =      0.00 

Log likelihood  =   -4687.2366                     Prob > chi2     =         . 

------------------------------------------------------------------------------ 

          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       _cons |  -4.344252    .021853  -198.79   0.000    -4.387083   -4.301421 

------------------------------------------------------------------------------ 
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The constant coefficient estimates that the average rate at which Rs exit 

from the unmarried state is: 

 

h = exp(-4.345) = 0.0130 

 

Stat will compute the value with this command: 

 

display exp(_b[_cons]) 

  

A model without covariates treats the data as a sample of homogeneous 

episodes. Yet everything we know and believe about social behavior leads 

us to believe that humans are not homogeneous. So, to test hypotheses 

about differences in hazard rates among individuals, we next examine 

exponential models with covariates. 

 

 

(2) with a time-constant covariate: 

 

The simplest way to include covariates in an exponential model is add time-

constant independent variables. These variables‟ values are fixed at the 

beginning of an episode and do not change over time. Sex (gender), race, 

ethnicity, parental social class, perhaps religion, are examples of ascribed 

variables that are time-constant. Other examples are statuses achieved 

prior to entry into the origin state; for example, to study how long first 

marriages survive until divorce, we should include R‟s age at the time of 

that marriage. 

 

These commands create a dummy variable female, then uses it as a time-

constant independent variable in an exponential model. 

 

recode sex(2=1)(1=0), generate(female) 
(6748 differences between sex and female) 
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streg female, dist(exp) nohr 
         failure _d:  desmar1 

   analysis time _t:  durmar1 

Iteration 0:   log likelihood = -4687.2366   

Iteration 1:   log likelihood = -4659.0458   

Iteration 2:   log likelihood = -4658.8527   

Iteration 3:   log likelihood = -4658.8527   

Exponential regression -- log relative-hazard form  

No. of subjects =         6715                     Number of obs   =      6715 

No. of failures =         2094 

Time at risk    =       161310 

                                                   LR chi2(1)      =     56.77 

Log likelihood  =   -4658.8527                     Prob > chi2     =    0.0000 

------------------------------------------------------------------------------ 

          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      female |   .3304405   .0440685     7.50   0.000     .2440679    .4168131 

       _cons |  -4.517063   .0330952  -136.49   0.000    -4.581928   -4.452198 

------------------------------------------------------------------------------ 

 

streg female, dist(exp)  
------------------------------------------------------------------------------ 

          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      female |   1.391581   .0613248     7.50   0.000     1.276431    1.517119 

------------------------------------------------------------------------------ 

 

The Coef. estimate for female is 0.330, while its exponentiated value, "Haz. 

Ratio" is 1.392. The null hypothesis is that the coefficient for that predictor 

does not differ significantly from zero; H0:  = 0. In other words, the hazard 

rates for the two genders are equal in the population. 

 

The t-test statistic (Z) for a two-tailed research hypothesis = 7.50, so we can 

reject the null hypothesis that the parameter equals 0 in the population with 

a probability of a false rejection (Type I error) of p < .0001. 

 

The standard error can be used in the usual fashion to construct 

confidence intervals, either around estimated female coefficient or around 

the risk ratio. Thus, for a 99% CI around the coefficient: 

 

 99% bCI  =  b  (2.576 s )   
 

In the example, UCL = 0.330 + (2.576)(.044) = 0.443 and LCL = 0.330 - 

(2.576)(.044) = 0.217. A population parameter of 0 probably isn't inside the 

interval. 
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For the 99% CI around the risk ratio: 

 

 99%
b  2.576  sCI  =  e b

  
 

Thus, UCL = exp(0.443) = 1.557and LCL = exp(0.217) = 1.242. Because e0 = 

1, the 99% confidence limit for female does not include the null hypothesis 

value within its range. Women's marriage hazard is likely greater than 

men's hazard in the population. 

 

Recall from logistic regression that the exponentiated parameter value (exp 

B) multiplies the unspecified baseline hazard: if the value is greater than 1 

the hazard increases; if the exponentiated value is less than 1, the hazard 

decreases; while if it exactly equals 1, the baseline hazard remains 

unchanged. 

 

In this example, both forms of the coefficient reveal that the hazard for the 

women (coded female = 1) is larger than for the males (female = 0). That is, 

for each year of age the women had a greater hazard of marrying than did 

the men. To be precise, the hazard ratio shows the women's hazard was 

39.2% higher than the men's hazard. Here are the two versions of the 

women's estimated equation: 

 

330.0)1(330.0X3300.(t)hln WW   

 

3921.ee(t)h (1))330(0.X3300.

W
W   

 

Here are the two men's estimated equations: 

 

0.0)0(330.0X3300.(t)hln MM   

 

1.000eee(t)h 0(0))330(0.X3300.

M
M   

 

The ratio of the two hazards is (1.392/1.000) = 1.392; that is, the expected 

women's hazard is 39.2% greater than the expected men's hazard. And, this 

ratio of marital risks remains constant at all respondent ages.  
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As reported in the output above, the log likelihood for the current 

exponential model with female covariate is -4658.85. This model can be 

compared to the preceding model with no covariates, whose LL = -4687.24. 

The difference between the two nested equations can be tested by the 

Likelihood Ratio (LR) test statistic, which follows an approximate chi-

square distribution with m degrees of freedom, where m = the number of 

additional predictors: 

 

LR = 2 (LLcurrent - LLpreceding) 

 

In the example, LR = 2 ((-4658.85 - (-4687.24)) = 56.77 with 1 df. We should 

reject the null hypothesis, with a probability of false rejection error p < .001, 

that the additional covariate does not improve the model fit. Stata 

automatically tests any model against the constant only model; see the 

output above where LR chi2(1) = 56.77. However, if you want to compare 

two nested models that both have predictors, then you should calculate the 

LR by hand using the formula above.  

 

The first command graphs the Kaplan-Meier survival curves for both 

genders, and the second graphs their smoothed hazard rates: 

 

sts graph, survival by(female) 

sts graph, hazard by(female) 
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(3) with a qualitative time-dependent covariate: 

 

One of the most important advantage of event history analysis over logistic 

regression is its ability to estimate the effects of time-dependent covariates 

(independent variables). A longitudinal or retrospective dataset must 

contain both a dependent variable and one or more independent variables 

that change over time. A model specification explicitly includes t as the 

time designator for a time-dependent covariate: 

 

 ln h(t)  =  (t)  +   X  +   X (t)
1 1 2 2     

 

In this section I illustrate how to apply the method of episode-splitting for a 

qualitative time-dependent covariate; i.e., a predictor that changes its value 

only at discrete times and among a few states (at a minimum between two 

states). At any time when a covariate changes its value, the original episode 

is split into pieces, called subepisodes (or “spells”). Each subepisode 

contributes a new record to the dataset that contains time and state 

information that are used by an EHA program to estimate the effect of the 

time-dependent covariate on the hazard for the dependent variable. 

 

Some examples of time-dependent qualitative covariates: 

 

 To study episodes of unemployment until hired into a job, completing 

a retraining program is a discrete time-dependent covariate 

 

 To study childbirth episodes, getting married is a discrete predictor 

 

 For episodes of automobile purchases, consumers‟ incomes are 

measured only once per year (e.g., income tax reports in April) 

 

 For divorce episodes, losing a job is a discrete occurrence 

 

In contrast, an example of a continuous-time covariate is labor force 

experience as a predictor of promotion. What others? Some time- 

qualitative dependent covariates are absorbing (irreversible) states: once 

the change occurs, no further change is possible (e.g., loss of virginity; 

graduation from college; HIV infection). But, other discrete-state changes 

allow multiple entries and exits (e.g., serial attempts to diet, quit smoking). 
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I show how to estimate the effects of a time-dependent covariate on the 

first marriage hazard rate with qualitative time-dependent covariate that 

changes from an origin state into an absorbing destination state: achieving 

a high school degree. In this diagram R graduated at age 18 and married at 

age 24. Thus, the original marital episode, whose duration is 24 years 

before the event, must be split into two subepisodes: an 18-year interval 

when high school degree is 0, and a 6-year interval when high school 

degree is 1. The values of those variables after age 24 are irrelevant 

because R is no longer at-risk of a first marriage. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When a time-dependent covariate changes its value, an episode must be 

split, use Stata to create two subepisode records to replace the original 

episode. To understand what happens in the splitting process, below I 

show step-by-step changes in the records of Rs #80-89. 

 

1. The dependent variable state and time measures for the transition from 

unmarried to married are the same ones used in the life table analysis 

above: desmar1 and durmar1. 

 

 0                       18                   24            28 

Marriage: 

   1 = Married 

   0 = Unmarried 

High school: 

   1 = HS degree 

   0 = No degree 
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2. I created and saved hs_yyyy, a variable with the historical year when R‟s 

annual education variable first reached 12, based on annual survey reports 

of completed years of schooling.  

 

generate hs_yyyy=0 

replace hs_yyyy=1997 if educ1997>=12 

replace hs_yyyy=1998 if hs_yyyy==0 & educ1998 >= 12 

replace hs_yyyy=1999 if hs_yyyy==0 & educ1999 >= 12  

replace hs_yyyy=2000 if hs_yyyy==0 & educ2000 >= 12  

replace hs_yyyy=2001 if hs_yyyy==0 & educ2001 >= 12  

replace hs_yyyy=2002 if hs_yyyy==0 & educ2002 >= 12  

replace hs_yyyy=2003 if hs_yyyy==0 & educ2003 >= 12  

replace hs_yyyy=2004 if hs_yyyy==0 & educ2004 >= 12  

replace hs_yyyy=2005 if hs_yyyy==0 & educ2005 >= 12  

replace hs_yyyy=2006 if hs_yyyy==0 & educ2006 >= 12  

replace hs_yyyy=2007 if hs_yyyy==0 & educ2007 >= 12  

replace hs_yyyy=2008 if hs_yyyy==0 & educ2008 >= 12  

 

table hs_yyyy 
---------------------- 

  hs_yyyy |      Freq. 

----------+----------- 

        0 |      1,498 

     1997 |         10 

     1998 |        674 

     1999 |        991 

     2000 |      1,039 

     2001 |      1,012 

     2002 |        995 

     2003 |        404 

     2004 |         57 

     2005 |         14 

     2006 |         23 

     2007 |         13 

     2008 |         18 

---------------------- 

 

Although some of the 1,498 Rs coded 0 never graduated from high school, 

others may have been right-censored before they finished 12 years. To be 

used by Stata, the historical dates in hs_yyyy must be changed into R‟s 

age. 
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3. Initialize start time, tstart, to age 0 for all Rs; it will be modified for some 

records in step #11 below. Compute tfin, the episode duration, as R‟s age 

from birth until tend plus 1. The listing for Rs #80-89 shows the values of 

these calculations. 

 

generate tstart  = 0 
 (33 missing values generated) 

list pubid desmar1 durmar1 tstart tend in 80/89 
     +-------------------------------------------+ 

     | pubid   desmar1   durmar1   tstart   tend | 

     |-------------------------------------------| 

 80. |    80         0        28        0     27 | 

 81. |    81         0        25        0     24 | 

 82. |    82         0        25        0     24 | 

 83. |    83         0        28        0     27 | 

 84. |    84         1        24        0     23 | 

     |-------------------------------------------| 

 85. |    85         1        21        0     20 | 

 86. |    86         1        27        0     26 | 

 87. |    87         0        25        0     24 | 

 88. |    88         0        23        0     22 | 

 89. |    89         1        27        0     26 | 

 

4. Calculate hs_age, the number of years from R‟s birth until high school 

degree obtained (i.e., R‟s age when years of education is 12). If R never 

graduates, the hs_age value is negative:  

 

generate hs_age  = hs_yyyy – birth_yyyy 
     +----------------------------------------------------+ 

     | pubid   desmar1   durmar1   tstart   tend   hs_age | 

     |----------------------------------------------------| 

 80. |    80         0        28        0     27    -1981 | 

 81. |    81         0        25        0     24    -1984 | 

 82. |    82         0        25        0     24       18 | 

 83. |    83         0        28        0     27       21 | 

 84. |    84         1        24        0     23       18 | 

     |----------------------------------------------------| 

 85. |    85         1        21        0     20       18 | 

 86. |    86         1        27        0     26       19 | 

 87. |    87         0        25        0     24       18 | 

 88. |    88         0        23        0     22       17 | 

 89. |    89         1        27        0     26       18 | 

 

Rs #80 and #81 didn‟t graduate, so their hs_age values are negative. The 

other Rs all graduated sometime before tend, so their episodes will be split 

into two subepisodes at the time of graduation.  
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5. Create a dummy variable entryhs equal to 1 if R‟s hs_age date occurs 

before the end of the original episode; otherwise it‟s 0. This dummy is an 

indicator used below for splitting an R‟s episode into two subepisodes. 

 

generate entryhs = hs_age >0 & hs_age < tend 
     +--------------------------------------------------------------+ 

     | pubid   desmar1   durmar1   tstart   tend   hs_age   entryhs | 

     |--------------------------------------------------------------| 

 80. |    80         0        28        0     27    -1981         0 | 

 81. |    81         0        25        0     24    -1984         0 | 

 82. |    82         0        25        0     24       18         1 | 

 83. |    83         0        28        0     27       21         1 | 

 84. |    84         1        24        0     23       18         1 | 

     |--------------------------------------------------------------| 

 85. |    85         1        21        0     20       18         1 | 

 86. |    86         1        27        0     26       19         1 | 

 87. |    87         0        25        0     24       18         1 | 

 88. |    88         0        23        0     22       17         1 | 

 89. |    89         1        27        0     26       18         1 | 

 

Rs #80 and #81 had no high school degrees, so their original episodes will 

not be split. The other Rs all got high school degrees before tend, so in the 

next step their episodes will be split into two subepisodes at time hs_age. 

 

For those Rs with entryhs = 1, meaning that their hs_age occurs before the 

end of the episode, the following set of commands split the original 

episode into two subepisodes. Each original episode record is replaced by 

two subepisode records that have new id codes, correct states, start times, 

and end times. 
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6. Create new identification codes preparatory to split the cases. In the 

NLSY97 dataset, the newid just happens to be identical to the original pubid 

codes, but in other datasets these codes may differ. 

 
generate newid = _n 
     +----------------------------------------------------------------------+ 

     | pubid   newid   desmar1   durmar1   tstart   tend   hs_age   entryhs | 

     |----------------------------------------------------------------------| 

 80. |    80      80         0        28        0     27    -1981         0 | 

 81. |    81      81         0        25        0     24    -1984         0 | 

 82. |    82      82         0        25        0     24       18         1 | 

 83. |    83      83         0        28        0     27       21         1 | 

 84. |    84      84         1        24        0     23       18         1 | 

     |----------------------------------------------------------------------| 

 85. |    85      85         1        21        0     20       18         1 | 

 86. |    86      86         1        27        0     26       19         1 | 

 87. |    87      87         0        25        0     24       18         1 | 

 88. |    88      88         0        23        0     22       17         1 | 

 89. |    89      89         1        27        0     26       18         1 | 

 

7. The next command expands the number of records. In this dataset 5,211 

additional observations were created, so the expanded NLSY97 now has a 

total of 11,825 records (the 5,077 additional records plus the original 6,748). 

 

expand 2 if entryhs 
(5077 observations created) 

 

8. This command sorts the file by the newid values (to keep lines with the 

same newid codes adjacent) and creates a dummy variable posths =  0 for 

the first subepisode and = 1 for the second subepisode.  

 

by newid, sort: generate posths = (_n==2) 

 



 

 

 

 

 44 

9. This command creates t1 which has a missing value in the first 

subepisode and the previous end time (tend) in the second subepisode. 

The t1 values are used as the duration measure in Cox regression. 

 

by newid, sort: generate t1 = tend if _n==_N 
(5110 missing values generated) 

list pubid newid desmar1 durmar1 tstart tend t1 hs_age entryhs 

posths in 140/157, sepby(pubid) 
     +------------------------------------------------------------------------------------+ 

     | pubid   newid   desmar1   durmar1   tstart   tend   t1   hs_age   entryhs   posths | 

     |------------------------------------------------------------------------------------| 

140. |    80      80         0        28        0     27   27    -1981         0        0 | 

     |------------------------------------------------------------------------------------| 

141. |    81      81         0        25        0     24   24    -1984         0        0 | 

     |------------------------------------------------------------------------------------| 

142. |    82      82         0        25        0     24    .       18         1        0 | 

143. |    82      82         0        25        0     24   24       18         1        1 | 

     |------------------------------------------------------------------------------------| 

144. |    83      83         0        28        0     27    .       21         1        0 | 

145. |    83      83         0        28        0     27   27       21         1        1 | 

     |------------------------------------------------------------------------------------| 

146. |    84      84         1        24        0     23    .       18         1        0 | 

147. |    84      84         1        24        0     23   23       18         1        1 | 

     |------------------------------------------------------------------------------------| 

148. |    85      85         1        21        0     20    .       18         1        0 | 

149. |    85      85         1        21        0     20   20       18         1        1 | 

     |------------------------------------------------------------------------------------| 

150. |    86      86         1        27        0     26    .       19         1        0 | 

151. |    86      86         1        27        0     26   26       19         1        1 | 

     |------------------------------------------------------------------------------------| 

152. |    87      87         0        25        0     24    .       18         1        0 | 

153. |    87      87         0        25        0     24   24       18         1        1 | 

     |------------------------------------------------------------------------------------| 

154. |    88      88         0        23        0     22    .       17         1        0 | 

155. |    88      88         0        23        0     22   22       17         1        1 | 

     |------------------------------------------------------------------------------------| 

156. |    89      89         1        27        0     26    .       18         1        0 | 

157. |    89      89         1        27        0     26   26       18         1        1 | 

     +------------------------------------------------------------------------------------+ 
 

The line numbers in the left-most column have changed because of the 

numerous subepisodes created. Rs #80 and #81 still have only their original 

episodes, but the other Rs shown each have two subepisodes. This step 

generated 5,110 missing values for t1 (the 5,077records created in step #7 

plus the 33 missing values generated in step #3). 

 

10. This command begins changing the subepisode time variables to 

correct values. This step replaces the t1 missing value  in the first 

subepisode with R‟s age at high school graduation (hs_age) which is the 

end time of that subepisode (i.e., when R‟s hs_age value changes from 0 to 

1 for the second subepisode). 
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by newid, sort: replace t1  = hs_age if _n==1 & _N==2 
(5077 real changes made) 

 

11. This command copies the t1 value in first subepisode into tstart in the 

second subepisode, replacing the initial tstart value of 0 in step #3 above. 

 

by newid, sort: replace tstart  = t1[_n-1] if _n==2 
(5077 real changes made) 

 

12. This command changes desmar1 to 0 in all first subepisodes because a 

 first marriage occurs only in the second subepisode. But desmar1 is 

unchanged in the second subepisode (remaining 1 or 0, depending on 

whether R married or not). In this dataset 1,676 values were changed. 

 
by newid, sort: replace desmar1 = 0 if _n==1 & _N==2 
(1613 real changes made) 

     +------------------------------------------------------------------------------------+ 

     | pubid   newid   desmar1   durmar1   tstart   tend   t1   hs_age   entryhs   posths | 

     |------------------------------------------------------------------------------------| 

140. |    80      80         0        28        0     27   27    -1981         0        0 | 

     |------------------------------------------------------------------------------------| 

141. |    81      81         0        25        0     24   24    -1984         0        0 | 

     |------------------------------------------------------------------------------------| 

142. |    82      82         0        25        0     24   18       18         1        0 | 

143. |    82      82         0        25       18     24   24       18         1        1 | 

     |------------------------------------------------------------------------------------| 

144. |    83      83         0        28        0     27   21       21         1        0 | 

145. |    83      83         0        28       21     27   27       21         1        1 | 

     |------------------------------------------------------------------------------------| 

146. |    84      84         0        24        0     23   18       18         1        0 | 

147. |    84      84         1        24       18     23   23       18         1        1 | 

     |------------------------------------------------------------------------------------| 

148. |    85      85         0        21        0     20   18       18         1        0 | 

149. |    85      85         1        21       18     20   20       18         1        1 | 

     |------------------------------------------------------------------------------------| 

150. |    86      86         0        27        0     26   19       19         1        0 | 

151. |    86      86         1        27       19     26   26       19         1        1 | 

     |------------------------------------------------------------------------------------| 

152. |    87      87         0        25        0     24   18       18         1        0 | 

153. |    87      87         0        25       18     24   24       18         1        1 | 

     |------------------------------------------------------------------------------------| 

154. |    88      88         0        23        0     22   17       17         1        0 | 

155. |    88      88         0        23       17     22   22       17         1        1 | 

     |------------------------------------------------------------------------------------| 

156. |    89      89         0        27        0     26   18       18         1        0 | 

157. |    89      89         1        27       18     26   26       18         1        1 | 

     +------------------------------------------------------------------------------------+ 
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13. Create hs dummy variable for used as a time-dependent covariate in 

Cox regression. For Rs who graduate from high school, the value of hs is 

zero in the first subepisode and 1 in the second subepisode. For Rs that did 

not graduate, hs is 0 in the original episode. 

 

generate hs = hs_age <= ts & hs_yyyy > 0 
     +----------------------------------------------------------------------+ 

     | pubid   newid   desmar1   durmar1   tstart   tend   t1   hs_age   hs | 

     |----------------------------------------------------------------------| 

140. |    80      80         0        28        0     27   27    -1981    0 | 

     |----------------------------------------------------------------------| 

141. |    81      81         0        25        0     24   24    -1984    0 | 

     |----------------------------------------------------------------------| 

142. |    82      82         0        25        0     24   18       18    0 | 

143. |    82      82         0        25       18     24   24       18    1 | 

     |----------------------------------------------------------------------| 

144. |    83      83         0        28        0     27   21       21    0 | 

145. |    83      83         0        28       21     27   27       21    1 | 

     |----------------------------------------------------------------------| 

146. |    84      84         0        24        0     23   18       18    0 | 

147. |    84      84         1        24       18     23   23       18    1 | 

     |----------------------------------------------------------------------| 

148. |    85      85         0        21        0     20   18       18    0 | 

149. |    85      85         1        21       18     20   20       18    1 | 

     |----------------------------------------------------------------------| 

150. |    86      86         0        27        0     26   19       19    0 | 

151. |    86      86         1        27       19     26   26       19    1 | 

     |----------------------------------------------------------------------| 

152. |    87      87         0        25        0     24   18       18    0 | 

153. |    87      87         0        25       18     24   24       18    1 | 

     |----------------------------------------------------------------------| 

154. |    88      88         0        23        0     22   17       17    0 | 

155. |    88      88         0        23       17     22   22       17    1 | 

     |----------------------------------------------------------------------| 

156. |    89      89         0        27        0     26   18       18    0 | 

157. |    89      89         1        27       18     26   26       18    1 | 

     +----------------------------------------------------------------------+ 

 

The data are now ready for estimation of an exponential model of first 

marriage with a time-varying covariate. 

 



 

 

 

 

 47 

14. Declare the modified NLSY97 data to be survival-time data and report 

the dependent variables. The destination indicator is desmar1 and t1 is the 

new duration measure for the subepisodes computed above. 

 

stset t1, failure(desmar1) id(pubid) 
                id:  pubid 

     failure event:  desmar1 != 0 & desmar1 < . 

obs. time interval:  (t1[_n-1], t1] 

 exit on or before:  failure 

------------------------------------------------------------------------ 

    11825  total obs. 

       33  event time missing (t1>=.)                     PROBABLE ERROR 

------------------------------------------------------------------------ 

    11792  obs. remaining, representing 

     6735  subjects 

     2094  failures in single failure-per-subject data 

   161676  total analysis time at risk, at risk from t =         0 

                             earliest observed entry t =         0 

                                  last observed exit t =        28 

 

The 33 cases with missing event information are omitted. All 2,094 first 

marriages are considered “failures.” The person-years at risk are 161,676. 

 

15. Run Stata‟s streg program for an exponential distribution with hs as 

time-dependent covariate, for the coefficients and for the hazard ratios. 

 

streg hs, dist(exp) nohr  
         failure _d:  desmar1 

   analysis time _t:  t1 

                 id:  pubid 

Iteration 0:   log likelihood = -4691.9824   

Iteration 1:   log likelihood = -3370.7397   

Iteration 2:   log likelihood = -3107.6292   

Iteration 3:   log likelihood = -3105.5804   

Iteration 4:   log likelihood = -3105.5788   

Iteration 5:   log likelihood = -3105.5788   

Exponential regression -- log relative-hazard form  

No. of subjects =         6735              Number of obs   =     11792 

No. of failures =         2094 

Time at risk    =       161676 

                                            LR chi2(1)      =   3172.81 

Log likelihood  =   -3105.5788              Prob > chi2     =    0.0000 

----------------------------------------------------------------------- 

   _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

------+---------------------------------------------------------------- 

   hs |    2.59626   .0512226    50.69   0.000     2.495866    2.696655 

_cons |  -5.564016   .0446767  -124.54   0.000     -5.65158   -5.476451 

------------------------------------------------------------------------ 
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streg hs, dist(exp)  
------------------------------------------------------------------------ 

    _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------+---------------------------------------------------------------- 

    hs |   13.41348   .6870735    50.69   0.000     12.13224    14.83004 

------------------------------------------------------------------------ 

 

What are your substantive conclusions about the effect of graduating from 

high school on the proportional hazard of a first marriage? 

 

To what extent might the effect of high school graduation on first marriage 

be biased because of an unmeasured maturation process (i.e., as students 

get older they‟re more likely to graduate and also to marry)? How could you 

disentangle these collinear dynamics? 

 

 

(4) with a quantitative time-dependent covariate: 

 

The principle of episode splitting can be generalized from the preceding 

subsection – where a single change of a qualitative time-dependent 

covariate into an absorbing state occurred – to situations where a 

quantitative time-dependent covariate changes more often, possibly even 

reversing values over time. At every time point where a covariate changes 

its value, the episode is split into arbitrarily small subepisodes  (a.k.a. splits 

or spells). For each subepisode, a new record is created containing 

information about the state spaces and times of the dependent variable, 

with the value of the time-dependent covariate at the start of the 

subepisode. This method produces differing numbers of subepisodes for 

respondents, depending how long an R remains in the risk set before the 

event or right-censoring occurs. 

 

Although many variables change in continuous time (e.g., leaving a job), the 

method described here chops the timeline into discrete intervals and 

assigns the values to the start of the interval. You should choose a time-

unit for an event history analysis that is appropriate for the scale of the 

process you‟re investigating. For example, suppose we know the exact day 

of the year during a decade when people start and leave from their jobs. 

But, generating 365x10 = 3,650 subepisodes seems excessively precise 

because we lack daily measures on other important variables. Instead, we 

might decide to work with time units of 30-day months, for a total of 120 

monthly subepisodes. However, persons who started and quit working 
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within the same month would be treated as changing at the same time. 

Thus a person hired on March 4 who quit on March 23 would have a zero 

duration. To avoid such problems, add a “1” to the duration measure for all 

Rs.  

 

To illustrate episode splitting in the NLSY97 for a quantitative time-

dependent covariate, I chose educ, the number of completed years of 

schooling. Because the value of educ can change only once a year, and it is 

recorded at the annual NLSY97 interview, creating subepisodes of one 

year‟s duration is the appropriate time scale. (And the dataset we‟re 

working with contains no finer-grained temporal information.) 

 

I discovered that more than 75,000 records would be generated in this 

analysis, so Stata instructed me that program memory should be increased 

to at least 25 megabytes, which I did with this command: 

 

set memory 25M 

 

1. As discussed above, tend is R‟s age when the original episode ends in 

first marriage or right-censoring. Here are those computations again: 

 

generate tend = lastintv_yyyy – birth_yyyy 

replace tend = (marry1_yyyy – birth_yyyy)  if marry1_yyyy > 0 
(1875 real changes made, 33 to missing) 

 

table tend 
---------------------- 

     tend |      Freq. 

----------+----------- 

       13 |         10 

       14 |         24 

       15 |         39 

       16 |         57 

       17 |         98 

       18 |        158 

       19 |        221 

       20 |        319 

       21 |        355 

       22 |        376 

       23 |        435 

       24 |      1,226 

       25 |      1,136 

       26 |        944 

       27 |        718 

       28 |        599 

---------------------- 
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I‟ll illustrate the results with some of these four respondents: 

 

list pubid desmar1 tstart tend birth_yyyy in 80/86 
     +--------------------------------------------+ 

     | pubid   desmar1   tstart   tend   birth_~y | 

     |--------------------------------------------| 

 80. |    80         0        0     27       1981 | 

 82. |    82         0        0     24       1984 | 

 85. |    85         1        0     20       1984 | 

 86. |    86         1        0     26       1980 | 

     +--------------------------------------------+ 
 

2. Inform Stata that the NLSY97 dataset consists of single-episode data 

defined by desmar1 destination and tend duration: 

 

stset tend, failure(desmar1) id(pubid) 
                id:  pubid 

     failure event:  desmar1 != 0 & desmar1 < . 

obs. time interval:  (tend[_n-1], tend] 

 exit on or before:  failure 

 

------------------------------------------------------------------------------ 

     6748  total obs. 

       33  event time missing (tend>=.)                         PROBABLE ERROR 

------------------------------------------------------------------------------ 

     6715  obs. remaining, representing 

     6715  subjects 

     2094  failures in single failure-per-subject data 

   161310  total analysis time at risk, at risk from t =         0 

                             earliest observed entry t =         0 

                                  last observed exit t =        28 

 

3. The following command splits an original episode into annual 

subepisodes.  

 

stsplit t1, at(13(1)max) 
(74015 observations (episodes) created) 

 

It generates variable t1 and creates more than 74,000 subepisodes of one-

year duration for respondents from age 13 until the maximum value (age 28, 

see output in step #2). In the list command, I asked Stata to insert 

separation lines between Rs to make inspection easier. 

 

The output below shows that the subepisode values in desmar1 are 

missing except for the final record, where it is 0 if R is unmarried (right-

censored) or 1 if married.  
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The variable t1 stores each subepisode‟s start time and tend has its end 

time. Across the subepisodes of each R, tend increases annually by one 

year from age 13 through age at final interview (#80, #82) or first marriage 

(#85, #86).  However, the command above also produced many extraneous 

subepisodes for children who were older than 13 at the time of the 1997 

interview. They‟re highlighted in green below. Those erroneous records 

must be deleted. 

 

list pubid desmar1 tstart tend t1 birth_yyyy in 1013/1099, sepby(pubid) 
      +-------------------------------------------------+ 

      | pubid   desmar1   tstart   tend   t1   birth_~y | 

      |-------------------------------------------------| 

1013. |    80         .        0     13    0       1981 | 

1014. |    80         .        0     14   13       1981 | 

1015. |    80         .        0     15   14       1981 | 

1016. |    80         .        0     16   15       1981 | 

1017. |    80         .        0     17   16       1981 | 

1018. |    80         .        0     18   17       1981 | 

1019. |    80         .        0     19   18       1981 | 

1020. |    80         .        0     20   19       1981 | 

1021. |    80         .        0     21   20       1981 | 

1022. |    80         .        0     22   21       1981 | 

1023. |    80         .        0     23   22       1981 | 

1024. |    80         .        0     24   23       1981 | 

1025. |    80         .        0     25   24       1981 | 

1026. |    80         .        0     26   25       1981 | 

1027. |    80         0        0     27   26       1981 | 

      |-------------------------------------------------| 

1040. |    82         .        0     13    0       1984 | 

1041. |    82         .        0     14   13       1984 | 

1042. |    82         .        0     15   14       1984 | 

1043. |    82         .        0     16   15       1984 | 

1044. |    82         .        0     17   16       1984 | 

1045. |    82         .        0     18   17       1984 | 

1046. |    82         .        0     19   18       1984 | 

1047. |    82         .        0     20   19       1984 | 

1048. |    82         .        0     21   20       1984 | 

1049. |    82         .        0     22   21       1984 | 

1050. |    82         .        0     23   22       1984 | 

1051. |    82         0        0     24   23       1984 | 

      |-------------------------------------------------| 

1078. |    85         .        0     13    0       1984 | 

1079. |    85         .        0     14   13       1984 | 

1080. |    85         .        0     15   14       1984 | 

1081. |    85         .        0     16   15       1984 | 

1082. |    85         .        0     17   16       1984 | 

1083. |    85         .        0     18   17       1984 | 

1084. |    85         .        0     19   18       1984 | 

1085. |    85         1        0     20   19       1984 | 

      |-------------------------------------------------| 

1086. |    86         .        0     13    0       1980 | 

1087. |    86         .        0     14   13       1980 | 

1088. |    86         .        0     15   14       1980 | 

1089. |    86         .        0     16   15       1980 | 

1090. |    86         .        0     17   16       1980 | 

1091. |    86         .        0     18   17       1980 | 

1092. |    86         .        0     19   18       1980 | 

1093. |    86         .        0     20   19       1980 | 

1094. |    86         .        0     21   20       1980 | 

      |-------------------------------------------------| 
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4. To begin identifying erroneous subepisodes, first create risk_age when R 

was interviewed in 1997: 

 

generate risk_age = 1997 – birth_yyyy 

list pubid desmar1 tstart tend t1 risk_age birth_yyyy in 1013/1099, 

sepby(pubid) 
      +------------------------------------------------------------+ 

      | pubid   desmar1   tstart   tend   t1   risk_age   birth_~y | 

      |------------------------------------------------------------| 

1013. |    80         .        0     13    0         16       1981 | 

1014. |    80         .        0     14   13         16       1981 | 

1015. |    80         .        0     15   14         16       1981 | 

1016. |    80         .        0     16   15         16       1981 | 

1017. |    80         .        0     17   16         16       1981 | 

1018. |    80         .        0     18   17         16       1981 | 

1019. |    80         .        0     19   18         16       1981 | 

1020. |    80         .        0     20   19         16       1981 | 

1021. |    80         .        0     21   20         16       1981 | 

1022. |    80         .        0     22   21         16       1981 | 

1023. |    80         .        0     23   22         16       1981 | 

1024. |    80         .        0     24   23         16       1981 | 

1025. |    80         .        0     25   24         16       1981 | 

1026. |    80         .        0     26   25         16       1981 | 

1027. |    80         0        0     27   26         16       1981 | 

      |------------------------------------------------------------| 

1040. |    82         .        0     13    0         13       1984 | 

1041. |    82         .        0     14   13         13       1984 | 

1042. |    82         .        0     15   14         13       1984 | 

1043. |    82         .        0     16   15         13       1984 | 

1044. |    82         .        0     17   16         13       1984 | 

1045. |    82         .        0     18   17         13       1984 | 

1046. |    82         .        0     19   18         13       1984 | 

1047. |    82         .        0     20   19         13       1984 | 

1048. |    82         .        0     21   20         13       1984 | 

1049. |    82         .        0     22   21         13       1984 | 

1050. |    82         .        0     23   22         13       1984 | 

1051. |    82         0        0     24   23         13       1984 | 

      |------------------------------------------------------------| 

1078. |    85         .        0     13    0         13       1984 | 

1079. |    85         .        0     14   13         13       1984 | 

1080. |    85         .        0     15   14         13       1984 | 

1081. |    85         .        0     16   15         13       1984 | 

1082. |    85         .        0     17   16         13       1984 | 

1083. |    85         .        0     18   17         13       1984 | 

1084. |    85         .        0     19   18         13       1984 | 

1085. |    85         1        0     20   19         13       1984 | 

      |------------------------------------------------------------| 

1086. |    86         .        0     13    0         17       1980 | 

1087. |    86         .        0     14   13         17       1980 | 

1088. |    86         .        0     15   14         17       1980 | 

1089. |    86         .        0     16   15         17       1980 | 

1090. |    86         .        0     17   16         17       1980 | 

1091. |    86         .        0     18   17         17       1980 | 

1092. |    86         .        0     19   18         17       1980 | 

1093. |    86         .        0     20   19         17       1980 | 

1094. |    86         .        0     21   20         17       1980 | 

1095. |    86         .        0     22   21         17       1980 | 

1096. |    86         .        0     23   22         17       1980 | 

1097. |    86         .        0     24   23         17       1980 | 

1098. |    86         .        0     25   24         17       1980 | 

1099. |    86         1        0     26   25         17       1980 | 

      |------------------------------------------------------------| 
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Create a binary variable dropit to identify all subepisode with ending time 

occurring before R was interviewed in 1997, by comparing R‟s age at the 

first interview to each subepisode‟ end time: 

 

generate dropit = 0 

replace dropit = 1 if tend < risk_age 
(13275 real changes made) 

 

table dropit 
---------------------- 

   dropit |      Freq. 

----------+----------- 

        0 |     67,488 

        1 |     13,275 

---------------------- 

 

Then delete all subepisodes where dropit > 0: 

 

drop if dropit > 0 
(13275 observations deleted) 

 

table dropit 
---------------------- 

   dropit |      Freq. 

----------+----------- 

        0 |     67,488 

---------------------- 

 

list pubid desmar1 tstart tend t1 dropit risk_age birth_yyyy in 860/936, 

sepby(pubid) 
     +---------------------------------------------------------------------+ 

     | pubid   desmar1   tstart   tend   t1   dropit   risk_age   birth_~y | 

     |---------------------------------------------------------------------| 

860. |    80         .        0     16   15        0         16       1981 | 

861. |    80         .        0     17   16        0         16       1981 | 

862. |    80         .        0     18   17        0         16       1981 | 

863. |    80         .        0     19   18        0         16       1981 | 

864. |    80         .        0     20   19        0         16       1981 | 

865. |    80         .        0     21   20        0         16       1981 | 

866. |    80         .        0     22   21        0         16       1981 | 

867. |    80         .        0     23   22        0         16       1981 | 

868. |    80         .        0     24   23        0         16       1981 | 

869. |    80         .        0     25   24        0         16       1981 | 

870. |    80         .        0     26   25        0         16       1981 | 

871. |    80         0        0     27   26        0         16       1981 | 

     |---------------------------------------------------------------------| 

884. |    82         .        0     13    0        0         13       1984 | 

885. |    82         .        0     14   13        0         13       1984 | 

886. |    82         .        0     15   14        0         13       1984 | 

887. |    82         .        0     16   15        0         13       1984 | 
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888. |    82         .        0     17   16        0         13       1984 | 

889. |    82         .        0     18   17        0         13       1984 | 

890. |    82         .        0     19   18        0         13       1984 | 

891. |    82         .        0     20   19        0         13       1984 | 

892. |    82         .        0     21   20        0         13       1984 | 

893. |    82         .        0     22   21        0         13       1984 | 

894. |    82         .        0     23   22        0         13       1984 | 

895. |    82         0        0     24   23        0         13       1984 | 

     |---------------------------------------------------------------------| 

919. |    85         .        0     13    0        0         13       1984 | 

920. |    85         .        0     14   13        0         13       1984 | 

921. |    85         .        0     15   14        0         13       1984 | 

922. |    85         .        0     16   15        0         13       1984 | 

923. |    85         .        0     17   16        0         13       1984 | 

924. |    85         .        0     18   17        0         13       1984 | 

925. |    85         .        0     19   18        0         13       1984 | 

926. |    85         1        0     20   19        0         13       1984 | 

     |---------------------------------------------------------------------| 

927. |    86         .        0     17   16        0         17       1980 | 

928. |    86         .        0     18   17        0         17       1980 | 

929. |    86         .        0     19   18        0         17       1980 | 

930. |    86         .        0     20   19        0         17       1980 | 

931. |    86         .        0     21   20        0         17       1980 | 

932. |    86         .        0     22   21        0         17       1980 | 

933. |    86         .        0     23   22        0         17       1980 | 

934. |    86         .        0     24   23        0         17       1980 | 

935. |    86         .        0     25   24        0         17       1980 | 

936. |    86         1        0     26   25        0         17       1980 | 

     |---------------------------------------------------------------------| 

 

The dataset has precisely 12 subepisodes for each unmarried R who have 

all annual interviews (#80, #82). Other Rs‟ have fewer than 12 subepisodes 

if they have a first marriage (#85, #86) or are right-censored before 2008. 

 

In every R‟s first subepisode, the value for tend is R‟s age at the time of the 

initial 1997 interview. Verify that, in every R‟s first subepisode,  tend + 

birth_yyyy = 1997. 

 

5. As a precaution, create consecutive newid for all subepisodes: 

 

generate newid = _n 

 

The newid codes run sequentially from 1 to 67,488 (the final 33 cases are 

the ones with the missing values). The newid can be used to sort the 

records back into the correct sequence if they were to become disorder for 

any reason (see output in step #6). 
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6. Replace the 0s in tstart with R‟s age at the start of the subepisode: 

 

replace tstart = tend[_n-1] if pubid == pubid[_n-1] 
(60742 real changes made) 
     +--------------------------------------------------------------------+ 

     | pubid   newid   desmar1   tstart   tend   t1   risk_age   birth_~y | 

     |--------------------------------------------------------------------| 

860. |    80     860         .        0     16   15         16       1981 | 

861. |    80     861         .       16     17   16         16       1981 | 

862. |    80     862         .       17     18   17         16       1981 | 

863. |    80     863         .       18     19   18         16       1981 | 

864. |    80     864         .       19     20   19         16       1981 | 

865. |    80     865         .       20     21   20         16       1981 | 

866. |    80     866         .       21     22   21         16       1981 | 

867. |    80     867         .       22     23   22         16       1981 | 

868. |    80     868         .       23     24   23         16       1981 | 

869. |    80     869         .       24     25   24         16       1981 | 

870. |    80     870         .       25     26   25         16       1981 | 

871. |    80     871         0       26     27   26         16       1981 | 

     |--------------------------------------------------------------------| 

884. |    82     884         .        0     13    0         13       1984 | 

885. |    82     885         .       13     14   13         13       1984 | 

886. |    82     886         .       14     15   14         13       1984 | 

887. |    82     887         .       15     16   15         13       1984 | 

888. |    82     888         .       16     17   16         13       1984 | 

889. |    82     889         .       17     18   17         13       1984 | 

890. |    82     890         .       18     19   18         13       1984 | 

891. |    82     891         .       19     20   19         13       1984 | 

892. |    82     892         .       20     21   20         13       1984 | 

893. |    82     893         .       21     22   21         13       1984 | 

894. |    82     894         .       22     23   22         13       1984 | 

895. |    82     895         0       23     24   23         13       1984 | 

     |--------------------------------------------------------------------| 

919. |    85     919         .        0     13    0         13       1984 | 

920. |    85     920         .       13     14   13         13       1984 | 

921. |    85     921         .       14     15   14         13       1984 | 

922. |    85     922         .       15     16   15         13       1984 | 

923. |    85     923         .       16     17   16         13       1984 | 

924. |    85     924         .       17     18   17         13       1984 | 

925. |    85     925         .       18     19   18         13       1984 | 

926. |    85     926         1       19     20   19         13       1984 | 

     |--------------------------------------------------------------------| 

927. |    86     927         .        0     17   16         17       1980 | 

928. |    86     928         .       17     18   17         17       1980 | 

929. |    86     929         .       18     19   18         17       1980 | 

930. |    86     930         .       19     20   19         17       1980 | 

931. |    86     931         .       20     21   20         17       1980 | 

932. |    86     932         .       21     22   21         17       1980 | 

933. |    86     933         .       22     23   22         17       1980 | 

934. |    86     934         .       23     24   23         17       1980 | 

935. |    86     935         .       24     25   24         17       1980 | 

936. |    86     936         1       25     26   25         17       1980 | 

     |--------------------------------------------------------------------| 

 

With the exception of the first subepisode, the values of tend are exactly 1 

year older than tstart, which is the length of each subepisode after the first 

one. 
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7. We can now create the time-dependent covariate educ and merge its 

changing values with the corresponding subepisodes. 

 

First, determine the historic year for each subepisode by adding R‟s age at 

the end of the subepisode to birth year: 

 

generate historic_yyyy = birth_yyyy + tend 
(33 missing values generated) 
     +---------------------------------------------+ 

     | pubid   tstart   tend   birth_~y   histor~y | 

     |---------------------------------------------| 

860. |    80        0     16       1981       1997 | 

861. |    80       16     17       1981       1998 | 

862. |    80       17     18       1981       1999 | 

863. |    80       18     19       1981       2000 | 

864. |    80       19     20       1981       2001 | 

865. |    80       20     21       1981       2002 | 

866. |    80       21     22       1981       2003 | 

867. |    80       22     23       1981       2004 | 

868. |    80       23     24       1981       2005 | 

869. |    80       24     25       1981       2006 | 

870. |    80       25     26       1981       2007 | 

871. |    80       26     27       1981       2008 | 

     |---------------------------------------------| 

919. |    85        0     13       1984       1997 | 

920. |    85       13     14       1984       1998 | 

921. |    85       14     15       1984       1999 | 

922. |    85       15     16       1984       2000 | 

923. |    85       16     17       1984       2001 | 

924. |    85       17     18       1984       2002 | 

925. |    85       18     19       1984       2003 | 

926. |    85       19     20       1984       2004 | 

     |---------------------------------------------| 

 

Second, initialize new variable educ to 0, then systematically replace educ 

in every subepisode with the corresponding value from the set of historic 

education variables: 

 

generate educ=0 

replace educ = educ1997 if historic_yyyy == 1997 

replace educ = educ1998 if historic_yyyy == 1998 

replace educ = educ1999 if historic_yyyy == 1999 

replace educ = educ2000 if historic_yyyy == 2000 

replace educ = educ2001 if historic_yyyy == 2001 

replace educ = educ2002 if historic_yyyy == 2002 

replace educ = educ2003 if historic_yyyy == 2003 

replace educ = educ2004 if historic_yyyy == 2004 

replace educ = educ2005 if historic_yyyy == 2005 

replace educ = educ2006 if historic_yyyy == 2006 

replace educ = educ2007 if historic_yyyy == 2007 



 

 

 

 

 57 

replace educ = educ2008 if historic_yyyy == 2008 

 

list pubid tstart tend birth_yyyy historic_yyyy educ in 860/966, 

sepby(pubid) 
     +----------------------------------------------------+ 

     | pubid   tstart   tend   birth_~y   histor~y   educ | 

     |----------------------------------------------------| 

860. |    80        0     16       1981       1997      8 | 

861. |    80       16     17       1981       1998     10 | 

862. |    80       17     18       1981       1999     10 | 

863. |    80       18     19       1981       2000     11 | 

864. |    80       19     20       1981       2001     11 | 

865. |    80       20     21       1981       2002     11 | 

866. |    80       21     22       1981       2003     11 | 

867. |    80       22     23       1981       2004     11 | 

868. |    80       23     24       1981       2005     11 | 

869. |    80       24     25       1981       2006     11 | 

870. |    80       25     26       1981       2007     11 | 

871. |    80       26     27       1981       2008     11 | 

     |----------------------------------------------------| 

919. |    85        0     13       1984       1997      6 | 

920. |    85       13     14       1984       1998      8 | 

921. |    85       14     15       1984       1999      9 | 

922. |    85       15     16       1984       2000     10 | 

923. |    85       16     17       1984       2001     11 | 

924. |    85       17     18       1984       2002     12 | 

925. |    85       18     19       1984       2003     12 | 

926. |    85       19     20       1984       2004     12 | 

     |----------------------------------------------------| 

 

table educ 
---------------------- 

     educ |      Freq. 

----------+----------- 

       -5 |         73 

       -3 |        324 

        0 |         38 

        2 |          5 

        3 |          3 

        4 |         38 

        5 |        450 

        6 |      1,407 

        7 |      2,235 

        8 |      4,989 

        9 |      6,753 

       10 |      7,372 

       11 |      7,665 

       12 |     15,584 

       13 |      5,887 

       14 |      4,948 

       15 |      3,136 

       16 |      4,381 

       17 |      1,393 

       18 |        538 

       19 |        170 

       20 |         65 

       95 |         34 

---------------------- 
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The 34 respondents coded “95” on educ are home-schooled kids. Because 

we don‟t know their year-equivalents, I recoded them to a missing value: 

 

replace educ = . if educ == 95 
(34 real changes made, 34 to missing) 

 

8. Declare the enlarged dataset as single-episode data: 

 

stset tend, failure(desmar1) id(pubid) 
                id:  pubid 

     failure event:  desmar1 != 0 & desmar1 < . 

obs. time interval:  (tend[_n-1], tend] 

 exit on or before:  failure 

------------------------------------------------------------------------------ 

    67488  total obs. 

       33  event time missing (tend>=.)                         PROBABLE ERROR 

------------------------------------------------------------------------------ 

    67455  obs. remaining, representing 

     6713  subjects 

     2092  failures in single failure-per-subject data 

   161279  total analysis time at risk, at risk from t =         0 

                             earliest observed entry t =         0 

                                  last observed exit t =        28 

 

9. Estimate an exponential model with educ, the quantitative time-

dependent covariate: 

 

streg educ, dist(exp) nohr 

streg educ, dist(exp) 
         failure _d:  desmar1 

   analysis time _t:  tend 

                 id:  pubid 

Iteration 0:   log likelihood = -4683.1847   

Iteration 1:   log likelihood = -4540.7899   

Iteration 2:   log likelihood = -3412.1542   

Iteration 3:   log likelihood = -3392.8063   

Iteration 4:   log likelihood =   -3392.78   

Iteration 5:   log likelihood =   -3392.78   

Exponential regression -- log relative-hazard form  

No. of subjects =         6713                     Number of obs   =     67421 

No. of failures =         2092 

Time at risk    =       161245 

                                                   LR chi2(1)      =   2580.81 

Log likelihood  =     -3392.78                     Prob > chi2     =    0.0000 

------------------------------------------------------------------------------ 

          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        educ |    .340639   .0065798    51.77   0.000     .3277429    .3535351 

       _cons |  -8.084475   .0869436   -92.99   0.000    -8.254881   -7.914069 

------------------------------------------------------------------------------ 

 

 



 

 

 

 

 59 

------------------------------------------------------------------------------ 

          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        educ |   1.405846   .0092501    51.77   0.000     1.387832    1.424093 

------------------------------------------------------------------------------ 

 

Here‟s a version with both time-constant and time-dependent predictors: 

 

streg female educ, dist(exp) nohr 

streg female educ, dist(exp) 
         failure _d:  desmar1 

   analysis time _t:  tend 

                 id:  pubid 

Iteration 0:   log likelihood = -4683.1847   

Iteration 1:   log likelihood =  -4554.721   

Iteration 2:   log likelihood = -3400.3629   

Iteration 3:   log likelihood = -3379.8249   

Iteration 4:   log likelihood = -3379.8015   

Iteration 5:   log likelihood = -3379.8015   

Exponential regression -- log relative-hazard form  

No. of subjects =         6713                     Number of obs   =     67421 

No. of failures =         2092 

Time at risk    =       161245 

                                                   LR chi2(2)      =   2606.77 

Log likelihood  =   -3379.8015                     Prob > chi2     =    0.0000 

------------------------------------------------------------------------------ 

          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      female |   .2241718   .0441631     5.08   0.000     .1376138    .3107298 

        educ |   .3386266   .0065865    51.41   0.000     .3257174    .3515358 

       _cons |  -8.178872   .0891264   -91.77   0.000    -8.353556   -8.004187 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      female |   1.251286   .0552606     5.08   0.000     1.147532    1.364421 

        educ |   1.403019   .0092409    51.41   0.000     1.385024    1.421249 

------------------------------------------------------------------------------ 

 

What are your substantive interpretations about the effects of these 

independent variables on the first marriage hazard? Can you assess 

whether gender or education has a bigger impact? 
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10. As a side observation, let‟s compare the results we get if we use the 

subepisode data to estimate an exponential model with only female, to the 

same model specification for the original episode data (see subsection 2 

above): 

 

streg female, dist(exp) nohr 
         failure _d:  desmar1 

   analysis time _t:  tend 

                 id:  pubid 

 

Iteration 0:   log likelihood = -4683.6257   

Iteration 1:   log likelihood =  -4655.678   

Iteration 2:   log likelihood =  -4655.488   

Iteration 3:   log likelihood =  -4655.488   

 

Exponential regression -- log relative-hazard form  

 

No. of subjects =         6713                     Number of obs   =     67455 

No. of failures =         2092 

Time at risk    =       161279 

                                                   LR chi2(1)      =     56.28 

Log likelihood  =    -4655.488                     Prob > chi2     =    0.0000 

 

------------------------------------------------------------------------------ 

          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      female |   .3291446   .0440848     7.47   0.000       .24274    .4155491 

       _cons |  -4.517063   .0330952  -136.49   0.000    -4.581928   -4.452198 

 

The estimates differ negligibly from the earlier result (e.g., chi-square here 

is 56.28 and above is 56.77; coefficients and standard errors are almost 

identical). The comparison is reassuring: whether analyzing only original 

episodes or all the subepisodes, our substantive conclusions will be the 

same if the covariates do not change over time. But, of course, the reason 

for all the tedious data restructuring in this section was to the enable us to 

estimate EHA models where quantitative covariates are time-dependent. 
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OTHER PARAMETRIC EHA MODELS 

 

Sometimes social theory or prior research evidence suggests a particular 

shape for the hazard rate‟s variation over time, which may then be modeled 

with a parametric EHA model. Stata estimates several of these models with 

its “streg” command (preceded by a  “stset” command designating the 

dataset as episodic). This section discusses these models and their 

assumptions about the changing hazard rate or survival distribution. 

 

GOMPERTZ MODEL 

 

The Gompertz (or Gompertz-Makeham) law of mortality states that the death 

rate is the sum of an age-independent (Makeham) component and age-

dependent (Gompertz) component which increases exponentially with age. 

The model, which accurately describes the age dynamics of human 

mortality between 30 and 80 years, was used by life insurance companies 

to calculate the cost of life insurance. Organizational ecologists have used 

it to study life expectancy of organizational populations, and labor force 

economists have applied it to job durations.  

 

The hazard rate with a Gompertz distribution takes this form: 

 

tbeth )(
 

 

 

The parameter gamma controls how the hazard changes over time: 

 

 If γ = 0, the expression reduces to the exponential model where the 

hazard is constant through time 

 If γ > 0, the hazard increases monotonically 

 If γ < 0, it decreases monotonically  
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This figure illustrates some possible Gompertz distributions: 

 

 
 

Estimate a Gompertz model of the first marriage hazard rate with only the 

female time-constant covariate: 

 

stset durmar1, failure(desmar1) 

streg female, dist(gompertz) nohr 
Gompertz regression -- log relative-hazard form  

No. of subjects =         6715                     Number of obs   =      6715 

No. of failures =         2094 

Time at risk    =       168025 

                                                   LR chi2(1)      =     81.24 

Log likelihood  =   -2010.2336                     Prob > chi2     =    0.0000 

------------------------------------------------------------------------------ 

          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      female |   .3951805   .0440741     8.97   0.000     .3087969    .4815641 

       _cons |  -10.44493   .1390652   -75.11   0.000    -10.71749   -10.17237 

-------------+---------------------------------------------------------------- 

      /gamma |   .3029266   .0057361    52.81   0.000      .291684    .3141692 

------------------------------------------------------------------------------ 
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The coefficient for first marriage for women is higher than for men. 

 

The gamma coefficient is positive, indicating an increasing hazard of 

marriage over time, as shown by plotting the rate against age: 

 

stcurve, hazard 

 

0

.0
5

.1
.1

5
.2

.2
5

H
a

z
a
rd

 f
u
n

c
ti
o
n

15 20 25 30
analysis time

Gompertz regression

 
 



 

 

 

 

 64 

WEIBULL MODEL: 

 

In a Weibull distribution the hazard is proportional to a power of time: 

 

1)(  bbtbath  

 

Like the Gompertz, the Weibull can model an accelerating rate (where b > 

1); a monotonically increasing rate (where  0 < b < 1); and a decelerating 

rate ( B < 0). If b = 1, the Weibull is identical to the exponential model, 

whose h(t) is constant over time. 
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Using this Stata command for a Weibull model produces estimates that are 

parameterized as a proportional hazards model. As with the Gompertz 

model, the coefficient for female is positive. In Stat, the b coefficient is 

labeled “/ln_p”. It‟s greater than 1, so the hazard is accelerating. 

 

streg female, dist(weibull) nohr 
Weibull regression -- log relative-hazard form  

No. of subjects =         6715                     Number of obs   =      6715 

No. of failures =         2094 

Time at risk    =       168025 

                                                   LR chi2(1)      =     81.71 

Log likelihood  =   -1911.9579                     Prob > chi2     =    0.0000 

------------------------------------------------------------------------------ 

          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      female |   .3963144   .0440735     8.99   0.000     .3099319    .4826969 

       _cons |  -25.76859   .4693578   -54.90   0.000    -26.68851   -24.84866 

-------------+---------------------------------------------------------------- 

       /ln_p |   2.014602   .0190034   106.01   0.000     1.977356    2.051848 

-------------+---------------------------------------------------------------- 

           p |   7.497742   .1424825                      7.223618    7.782269 

         1/p |   .1333735   .0025345                      .1284972    .1384348 

------------------------------------------------------------------------------ 

 

Alternatively, adding “time” the command below parameterizes the Weibull 

model in an accelerated failure-time (ATF) version. Here the female 

coefficient has a sign opposite to the one above, because ATF models 

analyze the survivor function rather than the hazard rate: 

 

streg female educ, dist(weibull) time 
Weibull regression -- accelerated failure-time form  

No. of subjects =         6715                     Number of obs   =      6715 

No. of failures =         2094 

Time at risk    =       168025 

                                                   LR chi2(1)      =     81.71 

Log likelihood  =   -1911.9579                     Prob > chi2     =    0.0000 

------------------------------------------------------------------------------ 

          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      female |  -.0528578   .0059485    -8.89   0.000    -.0645166   -.0411991 

       _cons |   3.436846   .0052637   652.93   0.000     3.426529    3.447163 

-------------+---------------------------------------------------------------- 

       /ln_p |   2.014602   .0190034   106.01   0.000     1.977356    2.051848 

-------------+---------------------------------------------------------------- 

           p |   7.497742   .1424825                      7.223618    7.782269 

         1/p |   .1333735   .0025345                      .1284972    .1384348 

------------------------------------------------------------------------------ 
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LOG-LOGISTIC MODEL 

 

The log-logistic distribution can model hazard rates that monotonically 

decrease or that have a nonmonotonic inverse-U shape. If we track a birth 

cohort for sufficient time, first marriage hazard rates should rise then 

eventually fall, as do divorce and childbirth. Here is the hazard function: 

 

0,
)(1

)(
1

 





 ebea
at

tba
th A

b

bb

 

 

The b parameter determines which shape the hazard follows: 
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In Stata‟s output, the parameter α is labeled “_cons” and β0 is “/ln_gam”. 

 

streg female, dist(loglogistic) 
Loglogistic regression -- accelerated failure-time form  

No. of subjects =         6715                     Number of obs   =      6715 

No. of failures =         2094 

Time at risk    =       168025 

                                                   LR chi2(1)      =     99.57 

Log likelihood  =   -1857.2005                     Prob > chi2     =    0.0000 

------------------------------------------------------------------------------ 

          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      female |  -.0617769   .0062505    -9.88   0.000    -.0740276   -.0495261 

       _cons |   3.395277    .005157   658.38   0.000     3.385169    3.405384 

-------------+---------------------------------------------------------------- 

     /ln_gam |  -2.152815   .0186841  -115.22   0.000    -2.189436   -2.116195 

-------------+---------------------------------------------------------------- 

       gamma |   .1161567   .0021703                      .1119799    .1204892 

------------------------------------------------------------------------------ 

 

 

Substituting the output value into  b = exp(-β0) , we obtain b = exp(-(-2.153)) 

= 8.61. The first-marriage hazard rate initially rises, then falls (although that 

change in direction emerges empirically only among the oldest NLSY97 

respondents).
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LOG-NORMAL MODEL 

 

The final parametric EHA model follows a log-normal distribution, in which 

the hazard is zero when t = 0, increases to a maximum, then decreases 

asymptotically to 0 as time goes to infinity: 
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This graph show the hazard rate for α = 0 and different values for b: 
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In Stata‟s output, the parameter a is labeled “_cons” and b is “sigma”. 

 

streg female, dist(lognormal) 
Lognormal regression -- accelerated failure-time form  

No. of subjects =         6715                     Number of obs   =      6715 

No. of failures =         2094 

Time at risk    =       168025 

                                                   LR chi2(1)      =    114.13 

Log likelihood  =   -1780.9203                     Prob > chi2     =    0.0000 

------------------------------------------------------------------------------ 

          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      female |  -.0671427   .0063094   -10.64   0.000     -.079509   -.0547765 

       _cons |   3.405613   .0054687   622.74   0.000     3.394895    3.416332 

-------------+---------------------------------------------------------------- 

     /ln_sig |  -1.586004   .0171928   -92.25   0.000    -1.619701   -1.552307 

-------------+---------------------------------------------------------------- 

       sigma |   .2047421   .0035201                      .1979578     .211759 

------------------------------------------------------------------------------ 

 

As in the log-logistic model, the log-normal value of b = 0.295 indicates that 

the first-marriage hazard rate initially rises, then falls. 
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GENERALIZED GAMMA  MODEL 

 

The final parametric AFT model is be considered is the generalized gamma 

model. The exponential, Weibull, and log-logistic models are all special 

cases of the generalized gamma (see next subsection). But the GGM 

include other hazard shapes, such as U (“bathtub” exemplified by human 

mortality over the lifespan) and inverse-U (“arc-shaped”) distributions. Its 

hazard function is complicated (so much that I was not unable to find it). 

The sigma parameter controls the general shape of the hazard: 
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streg female, dist(gamma) 
Gamma regression -- accelerated failure-time form  

No. of subjects =         6715                     Number of obs   =      6715 

No. of failures =         2094 

Time at risk    =       168025 

                                                   LR chi2(1)      =    147.25 

Log likelihood  =   -1726.5848                     Prob > chi2     =    0.0000 

------------------------------------------------------------------------------ 

          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      female |   -.078458   .0063696   -12.32   0.000    -.0909422   -.0659739 

       _cons |   3.325187    .010341   321.55   0.000     3.304919    3.345455 

-------------+---------------------------------------------------------------- 

     /ln_sig |  -1.402013   .0169715   -82.61   0.000    -1.435277    -1.36875 

      /kappa |    -1.2355   .1159165   -10.66   0.000    -1.462692   -1.008308 

-------------+---------------------------------------------------------------- 

       sigma |    .246101   .0041767                      .2380494    .2544248 

------------------------------------------------------------------------------ 

 

Once again, the first-marriage hazard rate exhibits a rise-and-fall pattern. 
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CHOOSING A  PARAMETRIC MODEL 

 

Four of the parametric models above are nested, in the sense that one 

model is a special case of another. Model A is nested within model B if A 

can be obtained by imposing restrictions on B‟s parameters. We can test 

the fit of model A by taking twice the positive difference in log-likelihoods, 

distributed as chi-square with one degree of freedom for each restricted 

parameter.  

 

|)(|22
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The exponential, Weibull, and log-logistic models are nested within the 

generalized gamma. And the exponential model is nested within the 

Weibull. Hence these four tests can be performed: 

 

1. exponential vs Weibull 

2. exponential vs generalized gamma 

3. Weibull vs generalized gamma 

4. log-logistic vs generalized gamma 

  

Here are the calculations, where LL for the exponential model is -4652.1: 

 

1. 2(-4652.1 - (-1912.0) = 5480.2 

2. 2(-4652.1 - (-1726.6) = 5851.0 

3. 2(-1912.0 - (-1726.6)) =  370.8 

4. 2(-1857.2 - (-1726.6)) =  261.2 

 

Clearly the exponential model of unchanging hazard rate must be rejected. 

The generalized gamma model is an improvement over both the Weibull 

and log-logistic models. Of course, with more than 6,700 cases, 

substantively small differences are magnified because chi-square is a 

function of sample size. Still, we are probably correct to conclude that the 

first-marriage hazard rate increases and then decreases as the NLYS97 

respondents age. 
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SEMIPARAMETRIC MODELS 

 

The EHA models in the preceding section are based on parametric 

assumptions about the distribution of durations and are estimated with 

MLE methods. Unfortunately, most social theories seldom indicate which 

parametric model is preferable. Another class of EHA models – 

semiparametric models – leaves the hazard rate unspecified. The most 

popular version is the Cox model (1972), also called the proportional 

hazards regression. 

 

In the Cox model, the hazard rate is: 

 

 h(t) = e(t) + βX  

 

h(t) = e(t) e βX     

 

Relabel the first term e(t) as h0(t), the initial or baseline hazard at time t:   

 

 h(t) = h0(t) e
βX 

 

The term h0(t) is an unspecified baseline hazard function that vanishes 

during the estimation procedure. At any time, t, the ratios of the log-hazards 

of any two individuals, i and j, remain constant: 
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The baseline hazard functions cancel, leaving a constant proportional 

difference between the pair of individuals at every point on the time line.  

When ln h(t) is plotted against t for any set of individuals, the curves are 

parallel (and hence proportional). Also, a Cox model equation has no 

constant term because it cancels in the numerator and denominator (i.e., 

the constant becomes part of the baseline hazard).
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Cox proportional hazards estimation requires only information on the order 

in which events occur, not on their exact times. Cox regression sacrifices 

full efficiency (its standard errors are larger than parametric EHA models), 

presumably with robust results. The partial likelihood estimation method 

can encounter difficulties if many cases have tied ending times (which 

occurs in the NLSY97 dataset where years are the time units). Stata‟s 

algorithm for partial likelihood uses the Breslow approximation by default. 

Alternative options in Stata for dealing with the problem of tied ending 

times include Efron‟s method (efron), exact marginal-likelihood (exactm), 

and exact partial-likelihood (exactp). These options require more computer 

time, especially with time-dependent covariates. Consult the Stata help 

manual for details. 

 

To illustrate the Cox model, I regress first marriage on female and black (a 

binarized race variable), because Cox regression cannot perform the 

statistical test below with only a single predictor in the equation. 

 

recode race(2/4=0), generate(black) 

stset durmar1, failure(desmar1) 

stcox female black, nohr 

stcox female black 
Cox regression -- Breslow method for ties 

No. of subjects =         6715                     Number of obs   =      6715 

No. of failures =         2094 

Time at risk    =       168025 

                                                   LR chi2(2)      =    234.42 

Log likelihood  =   -17484.126                     Prob > chi2     =    0.0000 

------------------------------------------------------------------------------ 

          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      female |   .4131226    .044096     9.37   0.000      .326696    .4995492 

       black |  -.8451063   .0763524   -11.07   0.000    -.9947544   -.6954583 

------------------------------------------------------------------------------ 
 

------------------------------------------------------------------------------ 

          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      female |    1.51153   .0666525     9.37   0.000      1.38638    1.647978 

       black |   .4295117   .0327943   -11.07   0.000     .3698143    .4988458 

------------------------------------------------------------------------------ 

 

The coefficient and hazard ratio estimate for female differs slightly from 

those in the exponential and Weibull models above. But, substantively, the 

all reach the same conclusion: the transition to first marriage is higher for 

women than men in the population. The hazard for black Rs is lower than 

for other races. 
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How plausible is the proportionality assumption of the Cox model for 

gender in these data? Two graphics commands in Stata permit visual 

checks. The first method produces double-log survivor plots, of –ln(-

ln(survival) against ln(analysis time), for a predictor with two or more 

categories. In this plot of survival by female, men = 0 and women = 1: 

 

stphplot, by(female) 
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Reasonably parallel lines would indicate the proportional hazards 

assumption has not be violated. The convergence in survival lines shown 

above suggests the gender hazard rates are not proportional, but changing 

differentially over time. 
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The second graphic method plots the Kaplan-Meier observed survival 

probabilities against analysis time and compares them with the Cox 

regression‟s predicted curves: 

 

stcoxkm, by(female) 
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Similarity between two curves would be consistent with the proportional-

hazards assumption. A few departures between observed and predicted 

values suggest some violation of the assumption. 
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But, are these violations a major or relatively minor deviation from 

proportionality? A statistical test is available to assess whether a covariate 

interacts with time. If the proportional hazards assumption is correct, then 

we should not be able to reject the null hypothesis no interaction between 

covariate and time. 

 

stcox black, tvc(female) 
Cox regression -- Breslow method for ties 

No. of subjects =         6715                     Number of obs   =      6715 

No. of failures =         2094 

Time at risk    =       168025 

                                                   LR chi2(2)      =    219.65 

Log likelihood  =   -17491.513                     Prob > chi2     =    0.0000 

------------------------------------------------------------------------------ 

          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

main         | 

       black |   .4299657    .032831   -11.05   0.000     .3702017    .4993778 

-------------+---------------------------------------------------------------- 

tvc          | 

      female |   1.016081   .0018926     8.56   0.000     1.012378    1.019797 

------------------------------------------------------------------------------ 

Note: variables in tvc equation interacted with _t 

 

By default, the female covariate under “tvc()” interacts with the time 

variable _t computed by Stata. We should reject the null hypothesis that 

gender and time do not interact in the population. Remember, however that 

the NLSY97 has a huge sample size, which increases the probability of 

inferring small sample effects as significant in the population. 

 

We could conclude that the Cox model assumption of proportionality for 

the first marriage hazard rate does not hold for gender in the NLSY97 data. 

The nonproportional Cox model above seems to be a better specification 

because its interaction term corrects for violation of the proportionality 

assumption.  

 

Alternatively, we could instead estimate one of the parametric EHA models 

above (most likely the generalized gamma model). Or, we could estimate a 

stratified Cox model with group-specific baseline hazard rates for different 

combinations of predictors. In general, a sample is split into groups 

(strata), with one group for every combination of categories. For female, 

only two groups are created; but, if we were to create race-by-gender 

combinations, four groups would be required (black-male, black-female, 

nonblack-male, nonblack-female). Then specify a Cox model so the 

baseline rate can differ for each group.  
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Two options are possible: 

 

(1) Define a separate model for each group, where covariate effects 

may differ across groups. Use a t-test to assess whether the 

difference in a pair of coefficients is probably greater than 0 in the 

population. 

 

(2) If no interaction effects occur, or datasets are too small to split 

into many subgroups, estimate a model for the nonproprotional 

groups simultaneously. This option fits separate models for each 

group category under the constraint that the coefficients are equal, 

but the baseline hazard functions are not equal. The group 

covariate no long produces a coefficient.  

 

Here is the Stata command to stratify the Cox model by gender:  

 

stcox black, strata(female) 
Stratified Cox regr. -- Breslow method for ties 

No. of subjects =         6715                     Number of obs   =      6715 

No. of failures =         2094 

Time at risk    =       168025 

                                                   LR chi2(1)      =    151.73 

Log likelihood  =   -16056.848                     Prob > chi2     =    0.0000 

------------------------------------------------------------------------------ 

          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

       black |   .4321405   .0329934   -10.99   0.000     .3720803    .5018954 

------------------------------------------------------------------------------ 

                                                          Stratified by female 

 

The hazard ratio for black in this stratified model is almost identical to the 

values above in the two Cox models where gender was not stratified. A 

reasonable inference from this result could be that female is approximately 

proportional, although we might want to examine the effects of additional 

covariates before drawing that conclusion. 
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MULTIPLE EPISODES & DESTINATIONS 

 

To this point we have considered only single-episode two-state EHA. No R 

experienced more than one event, a transition from one origin state to a 

second destination state (e.g., the change from unmarried to first marriage; 

from first marriage to first divorce). The statisticians who developed 

survival analysis sought to explain “absorbing states,” such as biological 

death or equipment failure (e.g., light bulb burnout). However, with the 

exception of losing one‟s virginity, most social activities involve potentially 

recurrent or repeatable events: childbirth, unemployment, job change, 

homelessness, arrest, hospitalization, residence change, even multiple 

marriages and divorces. In some social processes, Rs may change from 

one state into one of several destinations: a nation could change its form of 

governance to democracy, monarchy, oligarchy, tyranny, etc. This final 

section of the EHA module briefly discusses the analysis of multiple 

episodes and of changes among competing destinations.  

 

MULTIPLE EPISODES 

 

By definition a repeatable event occurs more than once to some sample Rs. 

The multiple duration intervals corresponding to the distinct occurrences of 

a repeatable event are labeled episodes or spells. For example, employment 

history usually involves multiple job episodes for most workers. 

 

Two general approaches to investigating such multiple events are: 

 

 Estimate separate equations for each occurrence, with decreasing 

sample sizes for the risk sets of later events.  For example, 

demographers could estimate separate EHA models for the interval 

from marriage to a first birth; from first to second birth; etc. How to 

measure duration for unmarried mothers? 

 

 Treat each interval as a separate observation, pool all intervals for all 

respondents, and estimate a single hazard rate equation.  

 

The separate-equation method suffers from proliferating parameters, which 

can result in ambiguous and conflicting interpretations. Also, given a 

limited study period, the cases at risk for the later events may comprise a 

biased sample. For example, people entering a third marriage within a 10-
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year interval already had two brief, failed marriages. Hence, their durations 

between divorce and remarriage are much shorter than would be found in a 

study of multiple marriages contracted over a 30-year span. 

 

The pooled-equation method also has shortcomings. Initial entry into a 

state may involve quite different risks than later re-entries. For example, the 

risk of a first marriage occurs while a person is single, but the risks of all 

later marriages occur while a person is either divorced or widowed. Pooling 

both initial and subsequent spells might result in misleading parameters. A 

researcher should at least investigate separate equations before 

determining whether pooling makes sense. 

 

Another serious problem is that multiple spells are likely to be 

interdependent. Durations in a spell may depend on a respondent‟s past 

history. The presence of unobserved heterogeneity, arising from 

unmeasured common factors influencing several intervals, means that 

earlier spells will tend to resemble later spells. For example, employees 

who experience brief initial job tenures (quitting or being fired quickly) are 

more likely to have subsequent short job tenures (maybe they tend to be 

goof-offs, or prone to quarrel with their supervisors). Pooling observations 

without taking such dependency into account may bias the parameters‟ 

standard errors downward and elevate their test statistics. 

 

One simple method for detecting dependence is to specify an equation for a 

second interval that includes the first interval‟s duration as one of its 

independent variables. A significant parameter indicates the presence of 

residual dependence after controlling for other predictors. For example, 

suppose an analysis of women‟s childbearing finds a negative effect of the 

first-birth duration (time since marriage or since puberty) on second-birth 

hazard rate. That is, the longer the initial interval, the lower the hazard rate 

for subsequent childbirth. As another example, workers who hold a series 

of jobs gain increasing labor force experience. Hence, each job episode 

should include a variable measuring the total number of months (or other 

time unit) of experience at the time of entry into that job. 
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To illustrate multi-episode EHA analysis, Blossfeld et al. (2007) analyzed 

jobs episodes in the German Life History Study. Here are the first five Rs:  

 
     +-----------------------------------------------------------+ 

     | id   noj   tstart   tfin    tb   sex   pres   presn   edu | 

     |-----------------------------------------------------------| 

  1. |  1     1      555    982   351     1     34      -1    17 | 

     |-----------------------------------------------------------| 

  2. |  2     1      593    638   357     2     22      46    10 | 

  3. |  2     2      639    672   357     2     46      46    10 | 

  4. |  2     3      673    892   357     2     46      -1    10 | 

     |-----------------------------------------------------------| 

  5. |  3     1      688    699   473     2     41      41    11 | 

  6. |  3     2      700    729   473     2     41      44    11 | 

  7. |  3     3      730    741   473     2     44      44    11 | 

  8. |  3     4      742    816   473     2     44      44    11 | 

  9. |  3     5      817    828   473     2     44      -1    11 | 

     |-----------------------------------------------------------| 

 10. |  4     1      872    926   604     2     55      -1    13 | 

     |-----------------------------------------------------------| 

 11. |  5     1      583    650   377     1     44      44    11 | 

 12. |  5     2      651    787   377     1     44      44    11 | 

 13. |  5     3      788    982   377     1     44      -1    11 | 

     +-----------------------------------------------------------+ 

 

Some Rs have only a single job episode (id #1, #4), while other have several 

episodes, as indicated by the sequential job number, noj (R#3 has five job 

spells). Each job‟s starting and ending times, tstart and tfin, are recorded in 

“century months” where January 1900 is month = 1. (These historical dates 

could be changed to an age clock by subtracting R‟s birth month, tb.) The 

tstart for each succeeding job is month tfin+1 after leaving the previous job, 

to avoid zero durations for anyone who starts and ends a job inside one 

month. Variables pres and presn are the prestige scores of the current job 

and the next job, except for the final right-censored spell. 

 

In their multiple episode analyses, Blossfeld et al. (2007:53) used a 

“common process tie axis where the first episode for each individual 

begins at time zero (e.g., we use general labor force experience over the life 

time as time axis).”For example, R#2 began his first job at month 593, so 

593 is subtracted from each job episode‟s original starting and ending 

dates (the results appear below as tsp and tfp, respectively). 
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To analyze the pooled episode data, the “stset” command is modified to 

instruct Stata to keep all records for the Rs until their final exits: 

 

stset tfp, f(des) id(id) exit(time .) 
     +--------------------------------------------------------+ 

     | id   noj   tstart   tfin   org   des   tfc   tsp   tfp | 

     |--------------------------------------------------------| 

  1. |  1     1      555    982     1     1   555     0   428 | 

     |--------------------------------------------------------| 

  2. |  2     1      593    638     1     2   593     0    46 | 

  3. |  2     2      639    672     3     4   593    46    80 | 

  4. |  2     3      673    892     5     6   593    80   300 | 

     |--------------------------------------------------------| 

  5. |  3     1      688    699     1     2   688     0    12 | 

  6. |  3     2      700    729     3     4   688    12    42 | 

  7. |  3     3      730    741     5     6   688    42    54 | 

  8. |  3     4      742    816     7     8   688    54   129 | 

  9. |  3     5      817    828     9    10   688   129   141 | 

     |--------------------------------------------------------| 

 10. |  4     1      872    926     1     2   872     0    55 | 

     |--------------------------------------------------------| 

 11. |  5     1      583    650     1     2   583     0    68 | 

 12. |  5     2      651    787     3     4   583    68   205 | 

 13. |  5     3      788    982     5     5   583   205   400 | 

     +--------------------------------------------------------+ 

 

See Blossfeld et al. (2007:57) for details. 

 

MULTIPLE DESTINATIONS 

 

Sometimes Rs can move from an origin state into any of two or more 

destination states (competing risks). The state space and the covariates for 

each type of transition should be carefully specified, based on social theory 

or past empirical research. Suppose the destinations are post-BA 

employment outcomes and Rs are classified into five types of labor force 

status: not in labor force, unemployed, employed part-time, employed full-

time, self-employed.  

 

As before, let T denote the time of transition. Variable J is labor force 

status, from j = 1 to j = 5. The hazard for a specific destination j is: 
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The overall hazard is just the sum of all the type-specific hazards: 

 


J

j
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The type-specific hazards can be interpreted similarly to the hazard for a  

binary destination, except the events are a particular type of change. The 

multiple destination hazard rates can be modeled as functions of various 

combinations of time-constant and time-dependent covariates. By setting 

some covariates to zero, thereby excluding them as predictors of particular 

types of outcomes. For example, family wealth may affect self-employment 

but not full-time employment.  

 

EHA models with different functional forms of the hazard could be specified 

for different destinations; for example, a log-normal model for unemployed, 

a generalized gamma model for full-time employment, and proportional 

hazards model for self-employment. However, if all competing risks are 

estimated simultaneously in a single model, the same set of covariates and 

identical functional form of the hazard would have to be specified. If you‟re 

interested in only one type of outcome, such as unemployment, then just 

estimate a single model for that destination, treating all other labor force 

statuses as censored. An important assumption is the independence of 

irrelevant alternatives, that the competing risks are statistically 

independent. Nonindependence occurs if the hazards of different 

destinations shared unmeasured risk factors. For example, if humanities 

majors have a greater risk than science majors of unemployment and part-

time employment, then major should be included as a covariate in those 

equations. 

 

Using Stata to modeling multiple destinations involves complex commands 

and interpretations that are beyond the scope of this introductory module. 

Students interested in the procedure should examine the examples in 

Blossfeld et al. (2007:81-86, 101-109).
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