## Chapter 6

## Bivariate Correlation \& Regression

6.1 Scatterplots and Regression Lines
6.2 Estimating a Linear Regression Equation
6.3 R-Square and Correlation
6.4 Significance Tests for Regression Parameters

## Scatterplot: a positive relation

Visually display relation of two variables on $\mathrm{X}-\mathrm{Y}$ coordinates

50 U.S. States
$\mathrm{Y}=$ per capita income

X = \% adults with BA degree

Positive relation:
increasing $X$ related to higher values of $Y$


## Scatterplot: a negative relation

$\mathrm{Y}=\%$ in poverty $\quad \mathrm{X}=\%$ females in labor force


## Summarize scatter by regression line

Use linear regression to estimate "best-fit" line thru points:


PERCENT BACHELORS DEGREE
How can we use sample data on the $Y \& X$ variables to estimate population parameters for the best-fitting line?

## Slopes and intercepts

We learned in algebra that a line is uniquely located in a coordinate system by specifying: (1) its slope ("rise over run"); and (2) its intercept (where it crosses the Y -axis)

Equation has a bivariate linear relationship:
$Y=a+b X$
where:
$b$ is slope
$a$ is intercept
DRAW THESE


2 LINES:

## Prediction equation vs. regression model

In prediction equation, caret over $Y_{i}$ indicates predicted ("expected") score of ${ }_{\text {th }}$ case for independent value $X_{i}$ :

$$
\hat{\mathbf{Y}}_{\mathbf{i}}=\mathbf{a}+\mathbf{b}_{\mathbf{Y X}} \mathbf{X}_{\mathbf{i}} \quad \begin{aligned}
& \text { But we can never perfectly } \\
& \text { predict social relationships! }
\end{aligned}
$$

Regression model's error term indicates how discrepant is the predicted score from observed value of the ith case:

$$
\mathbf{Y}_{\mathbf{i}}=\mathbf{a}+\mathbf{b}_{\mathbf{Y X}} \mathbf{X}_{\mathbf{i}}+\mathbf{e}_{\mathbf{i}}
$$

Calculate the magnitude and sign of the $\mathrm{i}^{\text {th }}$ case's error by subtracting $1^{\text {st }}$ equation from $2^{\text {nd }}$ equation (see next slide):

$$
\mathbf{Y}_{i}-\hat{\mathbf{Y}}_{i}=\mathbf{e}_{\mathbf{i}}
$$

## Regression error

The regression error, or residual, for the ith case is the difference between the value of the dependent variable predicted by a regression equation and the observed value of that case.

Subtract the prediction equation from the linear regression model to identify the ith case's error term

$$
\begin{aligned}
Y_{i} & =a+b_{Y X} X_{i}+e_{i} \\
-\hat{Y}_{i} & =-a-b_{Y X} X_{i}
\end{aligned}
$$

$Y_{i}-\hat{Y}_{i}=e_{i}$
An analogy: In weather forecasting, an error is the difference between the weatherperson's predicted high temperature for today and the actual high temperature observed today:

Observed temp 86응 - Predicted temp 91응 Error -5º

## The Least Squares criterion

Scatterplot for state Income \& Education has a positive slope
To plot the regression line, we apply a criterion yielding the "best fit" of a line through the cloud of points


Ordinary least squares (OLS) a method for estimating regression equation coefficients -intercept (a) and slope (b) -- that minimize the sum of squared errors

## OLS estimator of the slope, $b$

Because the sum of errors is always 0 , we want parameter estimators that will minimize the sum of squared errors:

$$
\sum_{\mathbf{i}=1}^{\mathbf{N}}\left(\mathbf{Y}_{\mathbf{i}}-\hat{\mathbf{Y}}_{\mathbf{i}}\right)^{2}=\sum \mathbf{e}_{\mathbf{i}}^{2}
$$

Fortunately, both OLS estimators have this desired property

Bivariate regression coefficient:

$$
\mathbf{b}_{\mathbf{Y X}}=\frac{\sum\left(\mathbf{Y}_{\mathbf{i}}-\overline{\mathbf{Y}}\right)\left(\mathbf{X}_{\mathbf{i}}-\overline{\mathbf{X}}\right)}{\sum\left(\mathbf{X}_{\mathbf{i}}-\overline{\mathbf{X}}\right)^{2}}
$$

Numerator is sum of product of deviations around means; when divided by $N-1$ it's called the covariance of Y and X .

If we also divide the denominator by $N-1$, the result is the nowfamiliar variance of X .

Thus,

$$
\mathbf{b}_{\mathbf{Y X}}=\frac{\mathbf{S}_{\mathbf{Y X}}}{\mathbf{S}_{\mathbf{X}}^{2}}
$$

## OLS estimator of the intercept, a

The OLS estimator for the intercept (a) simply changes the mean of $Y$ (the dependent variable) by an amount equaling the regression slope's effect for the mean of $X$ :

Two important facts arise from this relation:
(1) The regression line always

$$
\mathbf{a}=\overline{\mathbf{Y}}-\mathbf{b} \overline{\mathbf{X}}
$$ goes through the point of both variables' means!

(2) When the regression slope is zero, for every $X$ we only predict that $Y$ equals the intercept $a$, which is also the mean of the dependent variable!


Use these two bivariate regression equations, estimated from the 50 States data, to calculate some predicted values:

$$
\hat{\mathbf{Y}}_{\mathbf{i}}=\mathbf{a}+\mathbf{b}_{\mathbf{Y X}} \mathbf{X}_{\mathbf{i}}
$$

1. Regress income on bachelor's degree:

$$
\begin{array}{ll}
\hat{\mathbf{Y}}_{\mathbf{i}}=\$ 9.9+0.77 \mathbf{X}_{\mathbf{i}} & \text { What predicted incomes for: } \\
& X_{i}=12 \%: Y= \\
& X_{i}=28 \%: Y=
\end{array}
$$

2. Regress poverty percent on female labor force pct:

$$
\hat{\mathbf{Y}}_{\mathbf{i}}=45.2 \%-0.53 \mathbf{X}_{\mathbf{i}}
$$

What predicted poverty \% for:

$$
\begin{aligned}
& X_{i}=55 \%: Y= \\
& X_{i}=70 \%: Y=
\end{aligned}
$$

Use these two bivariate regression equations, estimated from the 2008 GSS data, to calculate some predicted values:

$$
\hat{\mathbf{Y}}_{\mathbf{i}}=\mathbf{a}+\mathbf{b}_{\mathbf{Y X}} \mathbf{X}_{\mathbf{i}}
$$

3. Regress church attendance per year on age ( $\mathrm{N}=2,005$ )

$$
\hat{Y}_{i}=8.34+0.28 X_{i} \quad \text { What predicted attendance for: }
$$

$$
\begin{aligned}
& X_{i}=18 \text { years: } Y= \\
& X_{i}=89 \text { years: } Y=
\end{aligned}
$$

$\qquad$
$\qquad$
4. Regress sex frequency per year on age ( $\mathrm{N}=1,680$ )
$\hat{Y}_{i}=121.44-1.46 X_{i} \quad$ What predicted activity for:

$$
\begin{aligned}
X_{i} & =18 \text { years: } Y= \\
X_{i} & =89 \text { years: } Y=
\end{aligned}
$$

$\qquad$
$\qquad$
Linearity is not always a reasonable, realistic assumption to make about social behaviors!

## Errors in regression prediction

Every regression line through a scatterplot also passes through the means of both variables; i.e., point ( $\overline{\mathbf{Y}}, \overline{\mathbf{X}})$


We can use this relationship to divide the variance of Y into a double deviation from:
(1) the regression line
(2) the $Y$-mean line

Then calculate a sum of squares that reveals how strongly Y is predicted by X .

## Illinois double deviation

In Income-Education scatterplot, show the difference between the mean and Illinois' Y-score as the sum of two deviations:


PERCENT BACHELORS DEGREE

## Partitioning the sum of squares

Now generalize this procedure to all $N$ observations

1. Subtract the mean of $Y$ from the th observed score (= case i's deviation score):

$$
\mathbf{Y}_{\mathbf{i}}
$$

2. Simultaneously subtract and add th predicted score (leaves the deviation unchanged):

$$
Y_{i} \quad-\hat{Y}_{i}+\hat{Y}_{i} \quad-\bar{Y}
$$

3. Group these four elements into two terms: $\left(\begin{array}{lll}Y_{i} & -\hat{Y}_{i}\end{array}\right)+\left(\begin{array}{ll}\hat{Y}_{i} & -\bar{Y}\end{array}\right)$
4. Square both grouped terms:

$$
\left(Y_{i}-\hat{Y}_{i}\right)^{2}+\left(\hat{Y}_{i}-\bar{Y}\right)^{2}
$$

5. Sum the squares across all $N$ cases:

$$
\sum\left(Y_{i}-\hat{Y}_{i}\right)^{2}+\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2}
$$

6. Step \#5 equals the sum of the squared deviations in step \#1 (which is also the

$$
\sum\left(Y_{i}-\bar{Y}\right)^{2}
$$ numerator of the variance of Y ):

Therefore:

$$
\sum\left(Y_{i}-\bar{Y}\right)^{2}=\sum\left(Y_{i}-\hat{Y}_{i}\right)^{2}+\sum\left(\hat{Y}_{i}-\bar{Y}\right)^{2}
$$

## Naming the sums of squares

Each result of the preceding partition has a name:

$$
\begin{aligned}
& \sum\left(\mathbf{Y}_{\mathbf{i}}-\overline{\mathbf{Y}}\right)^{2}=\sum\left(\mathbf{Y}_{\mathbf{i}}-\hat{\mathbf{Y}}_{\mathbf{i}}\right)^{2}+\sum\left(\hat{\mathbf{Y}}_{\mathbf{i}}-\overline{\mathbf{Y}}\right)^{2} \\
& \text { TOTAL sum of ERROR sum REGRESSION } \\
& \text { squares of squares sum of squares }
\end{aligned}
$$

The relative proportions of the two terms on the right indicate how well or poorly we can predict the variance in $Y$ from its linear relationship with $X$

The $\mathrm{SS}_{\text {TOTAL }}$ should be familiar to you - it's the numerator of the variance of $Y$ (see the Notes for Chapter 2). When we partition the sum of squares into the two components, we're analyzing the variance of the dependent variable in a regression equation.

Hence, this method is called the analysis of variance or ANOVA.

## Coefficient of Determination

If we had no knowledge about the regression slope (i.e., $b_{Y X}=0$ and thus $S_{\text {REGRESSION }}=0$ ), then our only prediction is that the score of Y for every case equals the mean (which also equals the equation's intercept a; see slide \#10 above).

$$
\begin{aligned}
\hat{\mathbf{Y}}_{\mathbf{i}} & =\mathbf{a}+\mathbf{b}_{\mathbf{Y X}} \mathbf{X}_{\mathbf{i}} \\
\hat{\mathbf{Y}}_{\mathbf{i}} & =\mathbf{a}+0 \mathbf{X}_{\mathbf{i}} \\
\hat{\mathbf{Y}}_{\mathbf{i}} & =\mathbf{a}
\end{aligned}
$$

But, if $b_{Y X} \neq 0$, then we can use information about the $\boldsymbol{t}$ th case's score on X to improve our predicted Y for case $i$. We'll still make errors, but the stronger the $Y$ - $X$ linear relationship, the more accurate our predictions will be.

## $\mathbf{R}^{2}$ as a PRE measure of prediction

Use information from the sums of squares to construct a standardized proportional reduction in error (PRE) measure of prediction success for a regression equation

This PRE statistic, the coefficient of determination, is the proportion of the variance in $Y$ "explained" statistically by Y's linear relationship with X .

$$
\begin{gathered}
\mathbf{R}_{\mathbf{Y X}}^{2}=\frac{\mathbf{S S}_{\text {TOTAL }}-\mathbf{S S}_{\text {ERROR }}}{\mathbf{S S}_{\text {TOTAL }}}=\frac{\mathbf{S S}_{\text {REGRESSION }}}{\mathbf{S S}_{\text {TOTAL }}} \\
\mathbf{R}_{\mathbf{Y X}}^{2}=\frac{\sum\left(\mathbf{Y}_{\mathbf{i}}-\overline{\mathbf{Y}}\right)^{2}-\sum\left(\mathbf{Y}_{\mathbf{i}}-\hat{\mathbf{Y}}_{\mathbf{i}}\right)^{2}}{\sum\left(\mathbf{Y}_{\mathbf{i}}-\overline{\mathbf{Y}}\right)^{2}}=\frac{\sum\left(\hat{\mathbf{Y}}_{\mathbf{i}}-\overline{\mathbf{Y}}\right)^{2}}{\sum\left(\mathbf{Y}_{\mathbf{i}}-\overline{\mathbf{Y}}\right)^{2}}
\end{gathered}
$$

The range of R -square is from 0.00 to 1.00 , that is, from no predictability to "perfect" prediction.

Find the $\mathrm{R}^{2}$ for these 50-States bivariate regression equations

1. R-square for regression of income on education

$$
\begin{aligned}
& \text { SS }_{\text {REGRESSION }}=409.3 \\
& \text { SS }_{\text {ERROR }}=342.2 \quad \mathbf{R}^{2}= \\
& \text { SS }_{\text {TOTAL }}=751.5
\end{aligned}
$$

2. R-square for poverty-female labor force equation


Here are some R² problems from the 2008 GSS
3. R-square for church attendance regressed on age

$$
\begin{array}{ll}
\text { SS }_{\text {REGRESSION }} & 67,123 \\
\text { SS }_{\text {ERROR }}=2,861,928 & \mathbf{R}^{\mathbf{2}}= \\
\text { SS }_{\text {TOTAL }} & =
\end{array}
$$

4. R-square for sex frequency-age equation

SS $_{\text {REGRESSION }}=1,511,622$
SS $_{\text {ERROR }}=\square \mathbf{R}^{\mathbf{2}=}$
SS $_{\text {TOTAL }}=10,502,532$

## The correlation coefficient, $\mathbf{r}$

Correlation coefficient is a measure of the direction and strength of the linear relationship of two variables

Attach the sign of regression slope to square root of $R^{2}$ :

$$
\mathbf{r}_{\mathrm{YX}}=\mathbf{r}_{\mathrm{XY}}=\sqrt{\mathbf{R}_{\mathrm{YX}}^{2}}
$$

Or, in terms of covariances and standard deviations:

$$
\mathbf{r}_{\mathbf{Y X}}=\frac{\mathbf{S}_{\mathbf{Y X}}}{\mathbf{S}_{\mathbf{Y}} \mathbf{S}_{\mathbf{X}}}=\frac{\mathbf{S}_{\mathbf{X Y}}}{\mathbf{S}_{\mathbf{X}} \mathbf{S}_{\mathbf{Y}}}=\mathbf{r}_{\mathbf{X Y}}
$$

Calculate the correlation coefficients for these pairs:

| Regression Eqs. | $\mathrm{R}^{2}$ | $\mathrm{~b}_{\mathrm{YX}}$ | $\mathrm{r}_{\mathrm{YX}}$ |
| :--- | :--- | :--- | :--- |
| Income-Education | 0.55 | +0.77 |  |
| Poverty-labor force | 0.44 | -0.53 |  |
| Church attend-age | 0.018 | +0.19 |  |
| Sex frequency-age | 0.136 | -1.52 |  |

## Comparison of $\mathbf{r}$ and $\mathbf{R}^{\mathbf{2}}$

This table summarizes differences between the correlation coefficient and coefficient of determination for two variables.

|  | Correlation <br> Coefficient | Coefficient of <br> Determination |
| :--- | :---: | :---: |
| Sample statistic | r | $\mathrm{R}^{2}$ |
| Population <br> parameter | $\rho$ | $\rho^{2}$ |
| Relationship | $\mathrm{r}^{2}=\mathrm{R}^{2}$ | $\mathrm{R}^{2}=\mathrm{r}^{2}$ |
| Test statistic | $t$ test | $F$ test |

## Sample and population

Regression equations estimated with sample data can be used to test hypotheses about each of the three corresponding population parameters

Sample equation:

$$
\hat{Y}_{i}=a+b_{\mathrm{YX}} X_{i} \quad R_{\mathrm{YX}}^{2}
$$

Population equation:

$$
\hat{\mathrm{Y}}_{\mathrm{i}}=\alpha+\beta_{\mathrm{YX}} \mathrm{X}_{\mathrm{i}}
$$

$\rho_{\mathrm{YX}}^{2}$
Each pair of null and alternative (research) hypotheses are statements about a population parameter. Performing a significance test requires using sample statistics to estimate a standard error or a pair of mean squares.

## Hypotheses about slope, $\beta$

A typical null hypothesis about the population regression slope is that the independent variable $(\mathrm{X})$ has no linear relation with the dependent variable $(\mathrm{Y})$.

$$
\mathrm{H}_{0}: \beta_{\mathrm{YX}}=0
$$

Its paired research hypothesis is nondirectional (a two-tailed test):

$$
\mathrm{H}_{1}: \beta_{\mathrm{YX}} \neq 0
$$

Other hypothesis pairs are directional (one-tailed tests):

$$
\begin{array}{lll}
\mathrm{H}_{0}: \beta_{\mathrm{YX}} \leq 0 & \text { or } & \mathrm{H}_{0}: \beta_{\mathrm{YX}} \geq 0 \\
\mathrm{H}_{1}: \beta_{\mathrm{YX}}>0 & & \mathrm{H}_{1}: \beta_{\mathrm{YX}}<0
\end{array}
$$

## Sampling Distribution of $\beta$

The Central Limit Theorem, which let us analyze the sampling distribution of large-sample means as a normal curve, also treats the sampling distribution of $\beta$ as normal, with mean $\beta=0$ and standard error $\sigma_{\beta}$. Hypothesis tests may be one- or two-tailed.

Sampling Distribution of $B$


## The t-test for $\beta$

To test whether a large sample's regression slope ( $\mathrm{b}_{Y \mathrm{X}}$ ) has a low probability of being drawn from a sampling distribution with a hypothesized population parameter of zero $\left(\beta_{Y X}=0\right)$, apply a t-test (same as $Z$-test for large $N$ ).

where $\mathrm{s}_{\mathrm{b}}$ is the sample estimate of the standard error of the regression slope.

SSDA\#4 (pp. 192) shows how to calculate this estimate with sample data. But, in this course we will rely on SPSS to estimate the standard error.

Here is a research hypothesis: The greater the percentage of college degrees, the higher a state's per capita income.

1. Estimate the regression equation ( $\mathrm{s}_{\mathrm{b}}$ in parens):

$$
\begin{aligned}
\hat{Y}_{i}= & \$ 9.9+0.77 X_{i} \\
& (2.1) \quad(0.10)
\end{aligned}
$$

2. Calculate the test statistic:

$$
\mathrm{t}=\frac{\mathrm{b}_{\mathrm{YX}}-\beta_{\mathrm{YX}}}{\mathrm{~s}_{\mathrm{b}}}=
$$

3. Decide about the null hypothesis (one-tailed test):

| $\alpha$ | 1 -tail | 2 -tail |
| :--- | :--- | :--- |
| .05 | 1.65 | $\pm 1.96$ |
| .01 | 2.33 | $\pm 2.58$ |
| .001 | 3.10 | $\pm 3.30$ |

4. Probability of Type I error:
5. Conclusion: $\qquad$

For this research hypothesis, use the 2008 GSS ( $N=1,919$ ): The more siblings respondents have, the lower their occupational prestige scores.

1. Estimate the regression equation ( $\mathrm{s}_{\mathrm{b}}$ in parentheses):

$$
\begin{aligned}
\hat{Y}_{i}= & 46.87-0.85 X_{i} \\
& (0.47) \quad(0.10)
\end{aligned}
$$

2. Calculate the test statistic:

$$
\mathrm{t}=\frac{\mathrm{b}_{\mathrm{YX}}-\beta_{\mathrm{YX}}}{\mathrm{~s}_{\mathrm{b}}}=
$$

3. Decide about the null
hypothesis (one-tailed test): $\qquad$
4. Probability of Type I error:
5. Conclusion:

Research hypothesis: The number of hours people work per week is unrelated to number of siblings they have.

1. Estimate the regression equation ( $\mathrm{s}_{\mathrm{b}}$ in parentheses):

$$
\begin{aligned}
\hat{\mathrm{Y}}_{\mathrm{i}}= & 41.73+0.08 \mathrm{X}_{\mathrm{i}} \\
& (0.65)
\end{aligned}
$$

2. Calculate the test statistic:

$$
\mathrm{t}=\frac{\mathrm{b}_{\mathrm{YX}}-\beta_{\mathrm{YX}}}{\mathrm{~s}_{\mathrm{b}}}=
$$

3. Decide about the null hypothesis (two-tailed test): $\qquad$
4. Probability of Type I error:
5. Conclusion:

## Hypothesis about the intercept, $\alpha$

Researchers rarely have any hypothesis about the population intercept (the dependent variable's predicted score when the independent variable $=0$ ).
$\begin{array}{ll}\text { Use SPSS's standard error for a } & \mathrm{H}_{0}: \alpha=0 \\ \mathrm{t} \text {-test of this hypothesis pair: } & \mathrm{H}_{1}: \alpha \neq 0\end{array} \quad \mathrm{t}=\frac{\mathrm{a}-\alpha}{\mathrm{s}_{\mathrm{a}}}$
Test this null hypothesis: the intercept in the state incomeeducation regression equation is zero.

$$
\mathrm{t}=\frac{\mathrm{a}-\alpha}{\mathrm{s}_{\mathrm{a}}}=
$$

Decision about $\mathrm{H}_{0}$ (two-tailed): $\qquad$
Probability of Type I error: $\qquad$
Conclusion:

## Chapter 3

3.11 The Chi-Square and F Distributions

## Chi-Square

Two useful families of theoretical statistical distributions, both based on the Normal distribution:

## Chi-square and $F$ distributions

The Chi-square ( $\chi^{2}$ ) family: for $v$ normally distributed random variables, square and add each Z-score
$v$ (Greek nu) is the degrees of freedom (df) for a specific $\chi^{2}$ family member

$$
\begin{array}{ll}
\text { For } v=2: & \mathbf{Z}_{1}^{2}=\frac{\left(\mathbf{Y}_{1}-\mu_{\mathbf{Y}}\right)^{2}}{\sigma_{\mathbf{Y}}^{2}} \quad \mathbf{Z}_{2}^{2}=\frac{\left(\mathbf{Y}_{2}-\mu_{\mathbf{Y}}\right)^{2}}{\sigma_{\mathbf{Y}}^{2}} \\
& \boldsymbol{\chi}_{\boldsymbol{v}=2}^{2}=\mathbf{Z}_{1}^{2}+\mathbf{Z}_{2}^{2}
\end{array}
$$

## Shapes of Chi-Square

Mean for each $\chi^{2}=v$ and variance $=2 v$. With larger df, plots show increasing symmetry but each is positively skewed:


Areas under a curve can be treated as probabilities

## The F Distribution

The F distribution family: formed as the ratio of two independent chi-square random variables.

 | Ronald Fischer, a British statistician, |
| :--- |
| first described the distribution 1922. |
| In 1934, George Snedecor tabulated |
| the family's values and called it the F |
| distribution in honor of Fischer. |

Every member of the F family has two degrees of freedom, one for the chisquare in the numerator and one for the chi-square in the denominator:

$$
\mathbf{F}=\frac{\chi_{v_{1}}^{2} / v_{1}}{\chi_{v_{2}}^{2} / v_{2}}
$$

$F$ is used to test hypotheses about whether the variances of two or more populations are equal (analysis of variance $=$ ANOVA)
$F$ is also used in tests of "explained variance" in multiple regression equations (also called ANOVA)

Each member of the F distribution family takes a different shape, varying with the numerator and denominator dfs:


## Chapter 6

Return to hypothesis testing for regression

## Hypothesis about $\rho^{2}$

A null hypothesis about the population coefficient of determination (Rho-square) is that none of the dependent variable $(\mathrm{Y})$ variation is due to its linear relation with the independent variable (X):

$$
\mathrm{H}_{0}: \rho_{\mathrm{YX}}^{2}=0
$$

The only research hypothesis is that Rho-square in the population is greater than zero:

$$
\mathrm{H}_{1}: \rho_{\mathrm{YX}}^{2}>0
$$

Why is $\mathrm{H}_{1}$ never written with a negative Rho-square (i.e., $\rho^{2}<0$ )?

To test the null hypothesis about $\rho^{2}$, use the $\mathbf{F}$ distribution, a ratio of two chi-squares each divided by their degrees of freedom:

Degree of freedom: the number of values free to vary when computing a statistic

## Calculating degrees of freedom

The concept of degrees of freedom ( $d f$ ) is probably better understood by an example than by a definition.
Suppose a sample of $N=4$ cases has a mean of 6 .
I tell you that $Y_{1}=8$ and $Y_{2}=5$; what are $Y_{3}$ and $Y_{4}$ ?
Those two scores can take many values that would yield a mean of $6\left(Y_{3}=5 \& Y_{4}=6\right.$; or $\left.Y_{3}=9 \& Y_{4}=2\right)$
But, if I now tell you that $Y_{3}=4$, what must $Y_{4}=$ $\qquad$
Once the mean and N -1 other scores are fixed, the Nth score has no freedom to vary.

The three sums of squares in regression analysis "cost" differing degrees of freedom, which must be "paid" when testing a hypothesis about $\rho^{2}$.

## dffor the 3 Sums of Squares

 all scores except the final score are free to vary
2. Because the SS $_{\text {REGRESsion }}$ is estimated from one regression slope ( $\mathrm{b}_{\mathrm{YX}}$ ), it "costs" 1 df
3. Calculate the $d f$ for ${S S_{\text {ERROR }}}$ as the difference:

$$
\begin{aligned}
& d f_{\text {TOTAL }}=d f_{\text {REGRESSION }}+d f_{\text {ERROR }} \\
& N-1=d f_{\text {ERROR }}
\end{aligned}
$$

Therefore: $d f_{\text {ERROR }}=N-2$

## Mean Squares

To standardize F for different size samples, calculate mean (average) sums of squares per degree of freedom, for the three components

$$
\frac{\mathrm{SS}_{\text {TOTAL }}}{d f_{\text {TOTAL }}}=\frac{\mathrm{SS}_{\mathrm{REGRESSION}}}{d f_{\mathrm{REGRESSION}}}+\frac{\mathrm{SS}_{\mathrm{ERROR}}}{d f_{\mathrm{ERROR}}} \Rightarrow \frac{\mathrm{SS}_{\mathrm{TOTAL}}}{N-1}=\frac{\mathrm{SS}_{\mathrm{REGRESSION}}}{1}+\frac{\mathrm{SS}_{\mathrm{ERROR}}}{N-2}
$$

Label the two terms on the right side as Mean Squares:
$\mathbf{S S}_{\text {REGRESSION }} / \mathbf{1}=$ MS $_{\text {REGRESSION }}$ $\mathbf{S S}_{\text {ERROR }} /(\boldsymbol{N}-2)=\mathbf{M S}_{\text {ERROR }}$
The F statistic is thus a ratio of the two Mean Squares:

$$
\mathrm{F}=\frac{\mathrm{MS}_{\text {REGRESSIIN }}}{\mathrm{MS}_{\text {ERROR }}}
$$

$\mathrm{SS}_{\text {TOTAL }} / \mathrm{df}_{\text {TOTAL }}=$ the variance of Y (see the Notes for Chapter 2), further indication we're conducting an analysis of variance (ANOVA).

## Analysis of Variance Table

One more time: The F test for 50 State Income-Education Calculate and fill in the two MS in this summary ANOVA table, and then compute the F-ratio:

| Source | SS | df | MS | F |
| :--- | :--- | :--- | :--- | :--- |
| Regression | 409.3 |  |  |  |
| Error | 342.2 |  |  |  |
| Total | $\mathbf{7 5 1 . 5}$ |  | ------------------ |  |

A decision about $H_{0}$ requires the critical values for F , whose distributions involve the two degrees of freedom associated with the two Mean Squares

## Critical values for $F$

In a population, if $\rho^{2}$ is greater than zero (the $H_{1}$ ), then the $\mathrm{MS}_{\text {regression }}$ will be significantly larger than $\mathrm{MS}_{\text {ERROR }}$, as revealed by the $F$ test statistic.

An F statistic to test a null hypothesis is a ratio two Mean Squares. Each MSs has a different degrees of freedom ( $d f=1$ in the numerator, $d f=N-2$ in the denominator).

For large samples, use this table of critical values for the three conventional alpha levels:

Why are the c.v. for $F$ always positive?

| $\alpha$ | df $_{\mathrm{R}}, \mathrm{df}_{\mathrm{E}}$ | $\mathrm{C.v}$ |
| :--- | :--- | :--- |
| .05 | $1, \infty$ | 3.84 |
| .01 | $1, \infty$ | 6.63 |
| .001 | $1, \infty$ | 10.83 |

Test the hypothesis about $\rho^{2}$ for the occupational prestige-siblings regression, where sample $\mathrm{R}^{2}=0.038 . \quad \mathrm{H}_{1}: \rho_{\mathrm{YX}}^{2}>0$

| Source | SS | df | MS | F |
| :--- | :---: | :---: | :---: | :---: |
| Regression | 14,220 |  |  |  |
| Error | 355,775 |  |  |  |
| Total | 369,995 |  | ------------------ |  |

Decide about null hypothesis:
Probability of Type I error:
Conclusion:

Test the hypothesis about $\rho^{2}$ for the hours workedsiblings regression, where sample $\mathrm{R}^{2}=0.00027$.

| Source | SS | df | MS | F |
| :--- | :---: | :---: | :---: | :---: |
| Regression | 68 |  |  |  |
| Error | 251,628 |  |  |  |
| Total | 251,696 |  | ------------------- |  |

Decide about null hypothesis:
Probability of Type I error: $\qquad$
Conclusion:
Will you make always the same or different decisions if you test hypotheses about both $\beta_{Y x}$ and $\rho^{2}$ for the same bivariate regression equation? Why or why not?

