Chapter 4

Analysis of Variance

4.3 Tests for Two Means

Hypotheses About Mean Differences

Many research hypotheses compare two population means:
$>$ Women live longer than men
> Republicans are more conservative than Democrats
> Happiness differs between old and young
Restate symbolically as population mean differences:

> One-tailed: $H_{0}: \mu_{1} \leq \mu_{2}$ $\mathbf{H}_{1}: \mu_{1}>\mu_{2}$
Two-tailed:

$$
H_{0}=\mu_{1}=\mu_{2}
$$

$$
H_{1}: \mu_{1} \neq \mu_{2}
$$

Rearrange to show how the parameters differ from zero:

$$
\begin{array}{ll}
\mathbf{H}_{0}: \mu_{1}-\mu_{2} \leq \mathbf{0} & \mathbf{H}_{0}: \mu_{1}-\mu_{2}=\mathbf{0} \\
\mathbf{H}_{1}: \mu_{1}-\mu_{2}>\mathbf{0} & \mathbf{H}_{1}=\mu_{1}-\mu_{2} \neq \mathbf{0}
\end{array}
$$

Apply the Central Limit Theorem

If large independent samples are drawn randomly from two populations, then the sampling distribution of their mean difference is also normally distributed

	POP $\# 1$	POP $\# 2$
Means	μ_{1}	$\mu_{\mathbf{2}}$
Std. Devs.	σ_{1}	σ_{2}
Sample Sizes	\mathbf{N}_{1}	$\mathbf{N}_{\mathbf{2}}$

In the sampling distribution of mean differences:

Mean:

$$
\boldsymbol{\mu}_{\left(\overline{\mathbf{Y}}_{1}-\overline{\mathbf{Y}}_{2}\right)}=\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}
$$

Standard error:

$$
\boldsymbol{\sigma}_{\left(\overline{\mathbf{Y}}_{1}-\overline{\mathbf{Y}}_{2}\right)}=\sqrt{\sigma_{1}^{2} / \mathbf{N}_{1}+\boldsymbol{\sigma}_{2}^{2} / \mathbf{N}_{2}}
$$

Dual sampling distributions

$$
\mu_{1}-\mu_{2}=8-6=+2
$$

Combined sampling distribution

Standard error of the mean difference is wider than the standard errors of the separate sampling distributions:

Null and Research Hypotheses

Translate these English statements into symbolic form null and research hypotheses. Determine whether a one-tailed or two-tailed test is required.

Older and younger people differ in church attendance

Women express more intense religiosity than men

Steps in Hypothesis Testing

1\&2. State hypothesis pairs in English \& symbolic forms; rearrange to show numerical difference in parameters

$$
\begin{array}{ll}
\mathbf{H}_{0}: \mu_{1}=\mu_{2} \\
\mathbf{H}_{1}: \mu_{1} \neq \mu_{2}
\end{array} \quad \begin{aligned}
& \mathbf{H}_{0}=\mu_{1}-\mu_{2}=\mathbf{0} \\
& \mathbf{H}_{1}=\mu_{1}-\mu_{2} \neq \mathbf{0}
\end{aligned}
$$

3. Choose α-level (Type I / false rejection error)
4. In the Z score table, find the critical value(s) necessary to reject H_{0} at your chosen α-level

α (alpha)	One-tail c.v.	Two-tail c.v.
.05	1.65	± 1.96
.01	2.33	± 2.58
.001	3.10	± 3.30

Steps (continued)

5. Estimate the standard error using sample statistics

$$
\sigma_{\left.\overline{\mathrm{Y}}_{1}-\overline{\mathbf{Y}}_{2}\right)}=\sqrt{\sigma_{1}^{2} / \mathbf{N}_{1}+\boldsymbol{\sigma}_{2}^{2} / \mathbf{N}_{2}} \hat{\sigma}_{\left(\overline{\mathbf{Y}}_{1}-\overline{\mathbf{Y}}_{2}\right)}=\sqrt{\mathbf{s}_{1}^{2} / \mathbf{N}_{1}+\mathbf{s}_{2}^{2} / \mathbf{N}_{2}}
$$

6. Calculate the t-test value, and compare it to the critical value(s); then decide whether to reject H_{0}

$$
t=\frac{\left(\overline{\mathbf{Y}}_{1}-\overline{\mathbf{Y}}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\mathbf{s}_{1}^{2} / \mathbf{N}_{1}+\mathbf{s}_{2}^{2} / \mathbf{N}_{2}}}
$$

Consistent with the null hypothesis, right-hand side of the numerator equals zero (see rearranged H_{0})
7. If you reject H_{0}, what is probability of making a Type I error (false rejection error)?
8. State your substantive conclusion.

Test this research hypothesis with 2008 GSS data:
Older and younger people differ in church attendance

$$
\begin{array}{l|l|l|l|}
\mathbf{H}_{\mathbf{0}}: \mu_{\mathbf{0}}-\mu_{\mathbf{Y}}=\mathbf{0} & & \begin{array}{l}
\text { Old: } \\
50-89 \text { yrs }
\end{array} & \begin{array}{l}
\text { Young: } \\
18-49 \\
\text { y rs }
\end{array} \\
\mathbf{H}_{\mathbf{1}}: \mu_{\mathbf{O}}-\mu_{\mathbf{Y}} \neq \mathbf{0} & \mathbf{N} & 897 & \mathbf{1 , 1 0 8} \\
t=\frac{\left(\overline{\mathbf{Y}}_{1}-\overline{\mathbf{Y}}_{2}\right)-\left(\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}\right)}{\sqrt{\mathbf{s}_{1}^{2} / \mathbf{N}_{1}+\mathbf{s}_{2}^{2} / \mathbf{N}_{2}}} & \text { Mean } & 26.3 & 18.3 \\
\cline { 3 - 4 } & \text { Variance } & 753.1 & 588.9 \\
\hline
\end{array}
$$

Decision about null hypothesis:
Probability of Type I error: \qquad
Conclusion:

Test this research hypothesis with 2008 GSS data:

Women \& men differ in newspaper reading (times per year)

$$
\begin{array}{l|l|l|l}
& \mathbf{H}_{\mathbf{0}}: \mu_{\mathbf{W}}=\mu_{\mathbf{M}} & & \text { Women } \\
& \mathbf{H}_{\mathbf{1}}: \mu_{\mathbf{W}} \neq \mu_{\mathbf{M}} & \mathbf{N} & \text { Men } \\
t= & \frac{\left(\overline{\mathbf{Y}}_{1}-\overline{\mathbf{Y}}_{2}\right)-\left(\mu_{1}-\boldsymbol{\mu}_{2}\right)}{\sqrt{\mathbf{s}_{1}^{2} / \mathbf{N}_{1}+\mathbf{s}_{2}^{2} / \mathbf{N}_{2}}} & \text { Mean } & \text { 175.3 } \\
& \text { Variance } & \mathbf{1 7 9 . 6} \\
& & & \\
= & & & \\
\hline
\end{array}
$$

ision about null hypothesis:
Probability of Type I error:
Conclusion:

Test this research hypothesis with 2008 GSS data:

In the past 5 years, men had more sex partners than women

			Women
$\mathbf{H}_{\mathbf{0}}: \mu_{\mathbf{M}} \leq \mu_{\mathbf{w}}$		Men	
$\mathbf{H}_{\mathbf{1}}: \mu_{\mathbf{M}}>\mu_{\mathbf{W}}$	\mathbf{N}	933	775
$t=$	$\frac{\left(\overline{\mathbf{Y}}_{1}-\overline{\mathbf{Y}}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\mathbf{s}_{1}^{2} / \mathbf{N}_{1}+\mathbf{s}_{2}^{2} / \mathbf{N}_{2}}}$		Mean
		1.8	4.6
$=$			

Decision about null hypothesis:
Probability of Type I error:
Conclusion: \qquad

Hypotheses About Proportions

For dichotomous dependent variables, form hypotheses about population differences in two proportions

- Liberals favor legalizing pot more than conservatives

One-tailed:

$$
\begin{aligned}
& \mathbf{H}_{\mathbf{0}}: \rho_{\mathrm{L}} \leq \rho_{\mathbf{C}} \\
& \mathbf{H}_{\mathbf{1}}: \rho_{\mathbf{L}}>\rho_{\mathbf{C}}
\end{aligned}
$$

Rearranged:

$$
\begin{aligned}
& \mathbf{H}_{\mathbf{0}}: \rho_{\mathbf{L}}-\rho_{\mathbf{c}} \leq \mathbf{0} \\
& \mathbf{H}_{\mathbf{1}}: \rho_{\mathbf{L}}-\rho_{\mathbf{C}}>\mathbf{0}
\end{aligned}
$$

- Blacks and whites differ in support for death penalty

Two-tailed:
$H_{0}: \rho_{B}=\rho_{W}$
$H_{1}: \rho_{B} \neq \rho_{\mathbf{W}}$

Rearranged:

$$
\begin{aligned}
& \mathbf{H}_{\mathbf{0}}: \rho_{\mathbf{B}}-\rho_{\mathbf{W}}=\mathbf{0} \\
& \mathbf{H}_{\mathbf{1}}: \rho_{\mathbf{B}}=\rho_{\mathbf{W}} \neq \mathbf{0}
\end{aligned}
$$

Standard Error of Dichotomous Proportions

A proportion is the relative frequency of one outcome to the total sample size. The two proportions of a dichotomy sum to unity:

$$
p_{0}=\frac{f_{0}}{N} \quad p_{1}=\frac{f_{1}}{N} \quad \text { and } \mathrm{p}_{0}+\mathrm{p}_{1}=1.00
$$

$$
\text { (In B\&K, p. 124: } p_{1}=p \text { and } p_{0}=q \text {, thus } p+q=1.00 \text {) }
$$

Estimated standard error for one population's sampling distribution:

$$
s_{p}=\sqrt{p_{0} p_{1} / N}=\sqrt{p q / N}
$$

Estimated standard error for the difference in two populations' sampling distributions:

$$
S_{p_{1}-p_{2}}=\sqrt{\frac{p_{1} q_{1}}{N_{1}}+\frac{p_{2} q_{2}}{N_{2}}}
$$

Test this research hypothesis with 2008 GSS data:
Liberals visit art museums more than conservatives

$\mathbf{H}_{\mathbf{0}}: \rho_{\mathbf{L}}-\rho_{\mathbf{C}} \leq \mathbf{0}$		Libs	Cons
$\mathbf{H}_{\mathbf{1}}: \rho_{\mathbf{L}}-\rho_{\mathbf{C}}>\mathbf{0}$	\mathbf{N}	397	501
$t=\frac{\left(\mathbf{p}_{\mathbf{L}}-\mathbf{p}_{\mathrm{C}}\right)-\left(\rho_{\mathrm{L}}-\rho_{\mathrm{C}}\right)}{\sqrt{\mathbf{p}_{\mathrm{L}} \mathbf{q}_{\mathrm{L}} / \mathbf{N}_{\mathbf{L}}+\mathbf{p}_{\mathrm{C}} \mathbf{q}_{\mathrm{C}} / \mathbf{N}_{\mathrm{C}}}}$	Prop. p	.86	.60
	Prop. q	.14	.40

$=$

Decision about null hypothesis:
Probability of Type I error:
Conclusion:

Test this research hypothesis with 2008 GSS data:
Protestants and Catholics differ on "abortion for any reason"

$$
\begin{array}{l|l|l|}
\mathbf{H}_{\mathbf{0}}: \rho_{\mathbf{P}}-\rho_{\mathbf{C}}=\mathbf{0} & & \text { Protestant } \\
\mathbf{H}_{\mathbf{1}}: \rho_{\mathbf{P}}-\rho_{\mathbf{C}} \neq \mathbf{0} & \mathbf{N} & 676 \\
\\
t=\frac{\left(p_{P}-p_{C}\right)-\left(\rho_{P}-\rho_{C}\right)}{\sqrt{p_{P} q_{P} / N_{P}+p_{C} q_{C} / N_{C}}} & \text { Prop. } \mathbf{p} & .35 \\
\hline
\end{array}
$$

=

Decision about null hypothesis: \qquad Probability of Type I error:
Conclusion:

Hypotheses About Paired Means

Sometimes researchers want to compare the means of:
(1) two matched samples, such as husbands and wives
(2) the same person's responses to one variable at two times (e.g., before and after some experience)
(3) two variables measured on identical scales for each person

- Who does more housework, husbands or wives?
- Do you feel about statistics today as you did last month?
- Which tastes better - Coke or Pepsi?
- Do Americans like Japan or China more?

We can't apply the two-sample t-test. Although the sample size is 2 N cases (paired scores from N cases), the members of each pair were not selected independently. Instead, calculate t with the difference in paired scores.

Hypotheses about paired means ask whether the difference is zero in the two populations: $\mu_{\mathrm{D}}=\mu_{1}-\mu_{2}$

$$
\begin{aligned}
& \mathbf{H}_{\mathbf{0}}: \mu_{\mathbf{D}}=\mathbf{0} \\
& \mathbf{H}_{\mathbf{1}}: \mu_{\mathbf{D}} \neq \mathbf{0}
\end{aligned}
$$

In a sample, the difference for a pair of scores is:

$$
Y_{D}=Y_{1 i}-Y_{2 i}
$$

Calculate the sample standard deviation of the differences:

$$
s_{D}=\sqrt{\frac{\left(Y_{D}-\bar{Y}_{D}\right)^{2}}{N-1}}
$$

Then estimate the standard error:

$$
s_{D} / \sqrt{N}
$$

Test this research hypothesis with 2008 GSS data:
Americans differ in their level of confidence in business and confidence in Congress, each measured on a 5-point scale.

$$
\begin{array}{r}
\mathbf{H}_{\mathbf{0}}: \mu_{\mathbf{D}}=\mathbf{0} \\
\mathbf{H}_{\mathbf{1}}: \mu_{\mathbf{D}} \neq \mathbf{0} \\
t=\frac{\bar{Y}_{D}-\mu_{D}}{s_{D} / \sqrt{N}}
\end{array}
$$

	Business	Congress
Mean	2.91	2.57
Sample N	1,333	
S_{D}	0.94	

[^0]Decision about null hypothesis: \qquad
Probability of Type I error:
Conclusion:

[^0]: =

