Chapter 4

Analysis of Variance

4.3 Tests for Two Means

Hypotheses About Mean Differences

Many research hypotheses compare two population means:

- Women live longer than men
- Republicans are more conservative than Democrats
- Happiness differs between old and young

Restate symbolically as **population** mean differences:

 One-tailed:
 Two-tailed:

 $H_0: \mu_1 \leq \mu_2$ $H_0: \mu_1 = \mu_2$
 $H_1: \mu_1 > \mu_2$ $H_1: \mu_1 \neq \mu_2$

Rearrange to show how the parameters differ from zero:

Apply the Central Limit Theorem

If large independent samples are drawn randomly from two populations, then the sampling distribution of their mean <u>difference</u> is also normally distributed

	POP #1	POP #2
Means	μ_1	μ2
Std. Devs.	σ ₁	σ2
Sample Sizes	N ₁	N ₂

In the sampling distribution of mean differences:

Mean:

$$\boldsymbol{\mu}_{(\overline{\mathbf{Y}}_1 - \overline{\mathbf{Y}}_2)} = \boldsymbol{\mu}_1 - \boldsymbol{\mu}_2$$

Standard error:

$$\boldsymbol{\sigma}_{(\overline{\mathbf{Y}}_{1}-\overline{\mathbf{Y}}_{2})} = \sqrt{\boldsymbol{\sigma}_{1}^{2} / \mathbf{N}_{1} + \boldsymbol{\sigma}_{2}^{2} / \mathbf{N}_{2}}$$

Dual sampling distributions $\mu_1 - \mu_2 = 8 - 6 = +2$

Combined sampling distribution

Standard error of the mean difference is wider than the standard errors of the separate sampling distributions:

Null and Research Hypotheses

Translate these English statements into symbolic form null and research hypotheses. Determine whether a one-tailed or two-tailed test is required.

Older and younger people differ in church attendance

Women express more intense religiosity than men

Steps in Hypothesis Testing

1&2. State hypothesis pairs in English & symbolic forms; rearrange to show numerical difference in parameters

$$\begin{array}{c} \textbf{H}_{0} \vdots \ \mu_{1} \ = \ \mu_{2} \\ \textbf{H}_{1} \vdots \ \mu_{1} \ \neq \ \mu_{2} \end{array} \qquad \begin{array}{c} \textbf{H}_{0} \vdots \ \mu_{1} \ - \ \mu_{2} \ = \ \textbf{0} \\ \textbf{H}_{1} \vdots \ \mu_{1} \ - \ \mu_{2} \ \neq \ \textbf{0} \end{array}$$

3. Choose α -level (Type I / false rejection error)

4. In the Z score table, find the critical value(s) necessary to reject H_0 at your chosen α -level

α (alpha)	One-tail c.v.	Two-tail c.v.
.05	1.65	±1.96
.01	2.33	±2.58
.001	3.10	±3.30

Steps (continued)

5. Estimate the standard error using sample statistics

$$\boldsymbol{\sigma}_{(\overline{\mathbf{Y}}_{1}-\overline{\mathbf{Y}}_{2})} = \sqrt{\boldsymbol{\sigma}_{1}^{2}/\mathbf{N}_{1}+\boldsymbol{\sigma}_{2}^{2}/\mathbf{N}_{2}} \quad \bullet \quad \hat{\boldsymbol{\sigma}}_{(\overline{\mathbf{Y}}_{1}-\overline{\mathbf{Y}}_{2})} = \sqrt{\mathbf{S}_{1}^{2}/\mathbf{N}_{1}+\mathbf{S}_{2}^{2}/\mathbf{N}_{2}}$$

6. Calculate the *t*-test value, and compare it to the critical value(s); then decide whether to reject H₀

$$t = \frac{(\overline{\mathbf{Y}}_1 - \overline{\mathbf{Y}}_2) - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)}{\sqrt{\mathbf{s}_1^2 / \mathbf{N}_1 + \mathbf{s}_2^2 / \mathbf{N}_2}}$$

Consistent with the null hypothesis, right-hand side of the numerator equals zero (see rearranged H₀)

7. If you reject H₀, what is probability of making a Type I error (false rejection error)?

8. State your substantive conclusion.

Older and younger people differ in church attendance

$$H_{0} = \mu_{0} - \mu_{Y} = 0$$

$$H_{1} = \mu_{0} - \mu_{Y} \neq 0$$

$$t = \frac{(\overline{Y}_{1} - \overline{Y}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{s_{1}^{2} / N_{1} + s_{2}^{2} / N_{2}}}$$

	Old: 50-89 yrs	Young: 18-49 yrs
Ν	897	1,108
Mean	26.3	18.3
Variance	753.1	588.9

Decision about null hypothesis:

```
Probability of Type I error: _____
```

Women & men differ in newspaper reading (times per year)

H₀: μ_W = μ_M H₁: μ_W ≠ μ_M

$$t = \frac{(\overline{\mathbf{Y}}_1 - \overline{\mathbf{Y}}_2) - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)}{\sqrt{\mathbf{s}_1^2 / \mathbf{N}_1 + \mathbf{s}_2^2 / \mathbf{N}_2}}$$

	Women	Men
Ν	701	628
Mean	175.3	179.6
Variance	21,786.0	22,398.0

Decision about null hypothesis:

Probability of Type I error: _____

In the past 5 years, men had more sex partners than women

$$t = \frac{(\overline{\mathbf{Y}}_1 - \overline{\mathbf{Y}}_2) - (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2)}{\sqrt{\mathbf{s}_1^2 / \mathbf{N}_1 + \mathbf{s}_2^2 / \mathbf{N}_2}}$$

	Women	Men
Ν	933	775
Mean	1.8	4.6
Variance	18.6	187.7

Decision about null hypothesis:

Probability of Type I error:

Hypotheses About Proportions

For dichotomous dependent variables, form hypotheses about population differences in two proportions

• Liberals favor legalizing pot more than conservatives

One-tailed:	Rearranged:
H ₀ : ρ _L ≤ ρ _C	H ₀ : ρ _L - ρ _C ≤ 0
H ₁ : ρ _L > ρ _C	H ₁ : ρ _L - ρ _C > 0

• Blacks and whites differ in support for death penalty

Two-tailed:Rearranged: $H_0: \rho_B = \rho_W$ $H_0: \rho_B - \rho_W = 0$ $H_1: \rho_B \neq \rho_W$ $H_1: \rho_B - \rho_W \neq 0$

Standard Error of Dichotomous Proportions

A proportion is the relative frequency of one outcome to the total sample size. The two proportions of a dichotomy sum to unity:

$$p_0 = \frac{f_0}{N}$$
 $p_1 = \frac{f_1}{N}$ and $p_0 + p_1 = 1.00$
(In B&K, p. 124: $p_1 = p$ and $p_0 = q$, thus $p + q = 1.00$)

Estimated standard error for <u>one</u> population's sampling distribution:

$$s_p = \sqrt{p_0 p_1 / N} = \sqrt{pq / N}$$

Estimated standard error for the <u>difference</u> in <u>two</u> populations' sampling distributions:

$$s_{p_1 \cdot p_2} = \sqrt{\frac{p_1 q_1}{N_1} + \frac{p_2 q_2}{N_2}}$$

Liberals visit art museums more than conservatives

$$t = \frac{(\mathbf{p}_{\mathrm{L}} - \mathbf{p}_{\mathrm{C}}) - (\rho_{\mathrm{L}} - \rho_{\mathrm{C}})}{\sqrt{\mathbf{p}_{\mathrm{L}}\mathbf{q}_{\mathrm{L}} / \mathbf{N}_{\mathrm{L}} + \mathbf{p}_{\mathrm{C}}\mathbf{q}_{\mathrm{C}} / \mathbf{N}_{\mathrm{C}}}}$$

	Libs	Cons
Ν	397	501
Prop. p	.86	.60
Prop. q	.14	.40

Decision about null hypothesis:

Probability of Type I error: _____

Protestants and Catholics differ on "abortion for any reason"

H₀: ρ_P - ρ_C = 0 H₁: ρ_P - ρ_C ≠ 0

$$t = \frac{(p_{P} - p_{C}) - (\rho_{P} - \rho_{C})}{\sqrt{p_{P}q_{P} / N_{P} + p_{C}q_{C} / N_{C}}}$$

	Protestant	Catholic
Ν	676	295
Prop. p	.35	.40
Prop. q	.65	.60

Decision about null hypothesis:

Probability of Type I error: _____

Conclusion: __

Hypotheses About Paired Means

Sometimes researchers want to compare the means of:

- (1) two matched samples, such as husbands and wives
- (2) the same person's responses to one variable at two times (e.g., before and after some experience)
- (3) two variables measured on identical scales for each person
 - Who does more housework, husbands or wives?
 - Do you feel about statistics today as you did last month?
 - Which tastes better Coke or Pepsi?
 - Do Americans like Japan or China more?

We can't apply the two-sample t-test. Although the sample size is 2N cases (paired scores from N cases), the members of each pair were not selected independently.

Instead, calculate *t* with the difference in paired scores.

Hypotheses about paired means ask whether the difference is zero in the two populations: $\mu_D = \mu_1 - \mu_2$

In a sample, the difference for a pair of scores is:

$$Y_D = Y_{1i} - Y_{2i}$$

Calculate the sample standard deviation of the differences:

$$s_D = \sqrt{\frac{(Y_D - \overline{Y}_D)^2}{N - 1}}$$

Then estimate the standard error:

$$s_D / \sqrt{N}$$

Americans differ in their level of confidence in business and confidence in Congress, each measured on a 5-point scale.

4	o μ _D = 0 1 μ _D ≠ 0
<i>t</i> =	$\frac{\overline{Y}_D - \mu_D}{s_D / \sqrt{N}}$

	Business	Congress
Mean	2.91	2.57
Sample N	1,333	
S _D	0.94	

Decision about null hypothesis: _____

Probability of Type I error: _____