Chapter 3

Making Statistical Inferences

3.7 The t Distribution
3.8 Hypothesis Testing
3.9 Testing Hypotheses About Single Means

Limitations of the Normal Distribution

Researchers want to apply the central limit theorem to make inferences about population parameters, using one sample's descriptive statistics, by applying the theoretical standard normal distribution (Z table).

> But, except in classroom exercises, researchers will never actually know a population's variance. Hence, they can calculate neither the sampling distribution's standard error nor the Z score for any sample mean!

So, have we hit a statistical dead-end?

The \boldsymbol{t} distribution

Fortunately, we can use "Student's t distribution" (created by W.S. Gossett, a quality control expert at the Guinness Brewery) to estimate the unknown population standard error from the sample standard deviation.

Z-scores and t-scores for the ith sample are very similar:

$$
\mathbf{Z}_{i}=\frac{\overline{\mathbf{Y}}_{i}-\mu_{\mathbf{Y}}}{\sigma_{\bar{Y}}} \quad t_{i}=\frac{\overline{\mathbf{Y}}_{i}-\mu_{\mathbf{Y}}}{s_{\mathbf{Y}} / \sqrt{N}}
$$

- Z score uses the standard error of a population
- t score uses a sample estimate of that standard error

\boldsymbol{Z} versus \boldsymbol{t} distributions

Generally, t distributions have thicker "tails"

Fig. 3.7 Comparing t with Z

A Family of \boldsymbol{t} distributions

The thickness of the tails depends on the sample size (N). Instead of just one t distribution, an entire family of t scores exists, with a different curve for every sample size from $N=1$ to ∞.

Appendix D gives t family's critical values
But, for large samples ($N>100$), the Z and t tables have nearly identical critical values.
(Both tables' values are identical for $N=\infty$)
Therefore, to make statistical inferences using large samples - such as the 2008 GSS ($N=2,023$ cases) we can apply the standard normal table to find t values!

Hypothesis Testing

The basic statistical inference question is:
What is the probability of obtaining a sample statistic if its population has a hypothesized parameter value?
H_{1} : Research Hypothesis - states what you really believe to be true about the population
H_{0} : Null Hypothesis - states the opposite of H_{1}; this statement is what you expect to reject as untrue

Scientific positivism is based on the logic of falsification -we best advance knowledge by disproving null hypotheses.

We can never prove our research hypotheses beyond all doubts, so we may only conditionally accept them.

Writing Null \& Research Hypotheses

Hypotheses are always about a population parameter, although we test their truth-value with a sample statistic. We can write paired null and research hypotheses in words and in symbols.
A: Hypotheses stating the direction of a population mean
H_{0} : U of MN student GPA is below 3.00
H_{1} : U of MN student GPA is 3.00 or higher

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu<3.00 \text { GPA } \\
& \mathrm{H}_{1}: \mu \geq 3.00 \text { GPA }
\end{aligned}
$$

B: Hypotheses uncertain about population mean's direction
$\mathrm{H}_{0}: \mathrm{U}$ of MN student GPA is 3.00
$H_{1}: U$ of MN studnt GPA is not 3.00

$$
\begin{aligned}
& \mathbf{H}_{0}: \mu=3.00 \\
& H_{1}: \mu \neq 3.00
\end{aligned}
$$

Errors in Making Inferences

We use probability theory to make inferences about a population parameter based on a statistic from a sample.

But, we always run some risk of making an incorrect decision -- we might draw an extremely unlikely sample from the tail of the sampling distribution.

Type I error (false rejection error) occurs whenever we incorrectly reject a true null hypothesis about a population

Suppose that a sample of UMN student GPAs is 3.16. Based on the only evidence available to us, we decide to REJECT the null hypothesis H_{0} in the first pair above.

But, in the population (unknown to us), the true UMN student GPA is 2.97. Thus, our decision to reject a null hypothesis that really is true would be an ERROR. We should try to make the chances of making such false rejection errors as small as possible.

Type I \& Type II Errors

BOX 3.2.		(2) Based on the sample results, you must decide to:	
		Reject null hypothesis	Do not reject H_{0}
(1) In the population from which that sample	True	Type I or false rejection error (α)	Correct decision
hypothesis H_{0} really is:	False	Correct decision	Type II or false acceptance error (β)

Choosing the probability of Type I error

The probability of making a decision that results in a false rejection error (Type I error) is alpha (α).

We can choose an alpha area, in one or both tails of a sampling distribution, called the Region of Rejection.

Three conventional alpha areas that statisticians choose for probability of a Type I error are:

$$
\begin{aligned}
& \alpha=.05 \\
& \alpha=.01 \\
& \alpha=.001
\end{aligned}
$$

As a researcher, you control the size of Type I error by choosing how big or small a risk you're willing to take if you make a wrong decision. How much is at stake if you're wrong?

When you choose an α, you must live with consequences of your decision.

How big a risk would you take of falsely rejecting H_{0} that an AIDS vaccine is "unsafe to use"?

One- or Two-Tailed Tests?

How can you decide whether to write a one-tailed research hypothesis --

or a two-tailed research hypothesis?

You can use social theory, past research results, or even your hunches to choose your hypotheses that reflects the most likely current state of knowledge:

Two tail: states a difference, but doesn't say where
One tail: states a clear directional difference

Turning Off Highway Ramp Meters

In 2001, the Minnesota Legislature ordered all 430 ramp meter lights turned off for 6 weeks, a natural experiment about effects of metering on travel time, crashes, driver satisfaction. In the same period one year before, a total of 261 vehicle crashes occurred.

What are possible 1- and 2-tailed hypotheses that could be tested?

Politician: Turning off ramp meters will reduce traffic crashes
$H_{0}: \mu_{Y} \geq 261$ crashes
$H_{1}: \mu_{Y}<261$ crashes

Engineer: Turning off meters will change the number of traffic crashes, but they might either increase or decrease

$$
\begin{aligned}
& H_{0}: \mu_{Y}=261 \text { crashes } \\
& H_{1}: \mu_{Y} \neq 261 \text { crashes }
\end{aligned}
$$

Which alpha regions for which hypotheses?

Politician's prediction is probably true if the sample mean falls into which region(s) of rejection?

Engineer's prediction is probably true if the sample mean falls into which region(s) of rejection?

crashes

An evaluation found that crashes increased to 377 with the meters turned off, a jump of 44% ! Also, traffic speed decreased by 22% and travel time became twice as unpredictable due to unexpected delays. Any question why ramp meters were turned back on after six weeks?

Box 3.4 Significance Testing Steps

1. State a research hypothesis, H_{1}, which you believe to be true.
2. State the null hypothesis, H_{0}, which you hope to reject as false.
3. Chose an α-level for H_{0} It designates the region(s) of rejection, which is the probability of Type I error (a.k.a. false rejection error)
4. In the normal (Z) table, find the critical value(s) (c.v.) of t
5. Calculate t test statistic from the sample values:

- Use the sample s.d. and N to estimate the standard error

6. Compare this t-test statistic to the c.v. to see if it falls inside or outside the region(s) of rejection (draw a sampling distribution)
7. Decide whether to reject H_{0} in favor of H_{1}; if you reject the null hypothesis, state the probability α of making a Type I error
8. State a substantive conclusion about the variables involved

Let's test this pair of hypotheses about American family annual earnings with data from the 2008 GSS:
\mathbf{H}_{0} : American family incomes were $\$ 56,000$ or less
H_{1} : American family incomes were more than $\$ 56,000$
$H_{0}: \mu_{Y} \leq \$ 56,000$
$H_{1}: \mu_{Y}>\$ 56,000$
H_{1} puts the region of rejection (α) into the right-tail of the
sampling distribution which has mean earnings of $\$ 56,000$:

2008 GSS Sample Statistics on Income Mean $=\mathbf{\$ 5 8 , 6 8 3}$ Stand. dev. $=\mathbf{\$ 4 6 , 6 1 6 \quad N = 1 , 7 7 4}$

Perform the \boldsymbol{t}-test (Z-test)

3. Choose a medium probability of Type I error: $\alpha=.01$
4. What is c.v. of t_{α} ? (in C Area beyond Z)
5. Compute a t test statistic, using the sample values:

$$
t=\frac{\overline{\mathbf{Y}}-\mu_{\mathbf{Y}}}{\mathbf{s}_{\mathbf{Y}} / \sqrt{\mathbf{N}}}=
$$

6-7. Compare t-test to c.v., then make a decision about H_{0} : If this test statistic fell into the region of rejection, you must decide to \qquad the null hypothesis.
The Probability of Type I error is \qquad .
8. Give a substantive conclusion about annual incomes:

In the left (blue) sampling distribution, whose mean income $=\$ 56,000$, the region of rejection overlaps with another sampling distribution (green), which has higher mean income $=\$ 58,683$.

Thus, although the 2008 GSS sample had a low probability ($p<.01$, the shaded blue alpha area) of being drawn from a population where the mean income is $\$ 56,000$, that
 sample had a very high probability of coming from a population where the mean family income $=\$ 58,683$.

A researcher hypothesizes that, on average, people have sex more than once per week (52 times per year)
Write a one-tailed hypothesis pair:
$\mathbf{H}_{\mathbf{0}}: \mu_{\mathbf{Y}} \leq \mathbf{5 2}$
$\mathbf{H}_{\mathbf{1}}: \mu_{\mathbf{Y}}>\mathbf{5 2}$

Set $\alpha=.001$ and find critical value of t :
Sample statistics: Mean $=57.3$; st. Lev. $=67.9 ; N=1,686$
Estimate standard error and the t-test:

$$
t=\frac{\bar{Y}-\mu_{Y}}{s_{Y} / \sqrt{N}}
$$

Compare t-score to civ., decide H_{0} : \qquad
What is probability of Type I error?
Conclusion:

A researcher hypothesizes that the proportion of people getting news from the Internet differs from 0.30.

Write a two-tailed hypothesis pair: $\mathbf{H}_{\mathbf{0}} \mathbf{\rho} \boldsymbol{\rho}=\mathbf{0 . 3 0}$ $H_{1}: \rho \neq 0.30$

Set $\alpha=.01$ and find c.v. for t-test: \qquad
Proportion $=0.28$; standard error $=0.012 \quad N=1,376$
Estimate standard error and the t-test:

$$
t=\frac{p-\rho}{s_{\bar{p}}}=
$$

Compare t-score to c.v., decide H_{0} : \qquad
What is probability of Type I error?
Conclusion: \qquad

A research hypothesis is that people visit bars more than once per month (12 times/year)

Write a one-tailed hypothesis pair: $\begin{array}{ll}\mathbf{H}_{\mathbf{0}}: & \mu_{\mathbf{Y}} \leq \mathbf{1 2} \\ \mathbf{H}_{\mathbf{1}}: & \mu_{\mathbf{Y}}>\mathbf{1 2}\end{array}$
Set $\alpha=.01$ and find c.v. for t-test:

$$
\text { Mean }=16.4 ; \text { st. dev. }=42.9 ; N=1,328
$$

Estimate standard error and the t-test:
$t=\frac{\overline{\mathbf{Y}}-\mu_{\mathbf{Y}}}{\mathbf{S}_{\mathbf{Y}} / \sqrt{\mathbf{N}}}=$
Compare t-score to c.v., decide H_{0} : \qquad
What is probability of Type I error?
Conclusion:

A demographer hypothesizes that the mean number of people living in U.S. households is now below 2.50 ?

Write a one-tailed hypothesis pair: $\begin{array}{ll}\mathbf{H}_{\mathbf{0}}: & \mu_{\mathbf{Y}} \geq \mathbf{2 . 5 0} \\ & \mathbf{H}_{\mathbf{1}}: \mu_{\mathbf{Y}}<\mathbf{2 . 5 0}\end{array}$
Set $\alpha=.001$ and find c.v. for t-test:

$$
\text { Mean }=2.47 \text { people; st.dev. }=1.42 ; N=2,023
$$

Estimate standard error and the t-test:
$t=\frac{\overline{\mathbf{Y}}-\mu_{\mathbf{Y}}}{\mathbf{S}_{\mathbf{Y}} / \sqrt{\mathbf{N}}}=$
Compare t-score to c.v., decide H_{0} :
What is probability of Type I error?
Conclusion:

Can we reject the null hypothesis that the mean church attendance is twice per month (24 times/year)?

Write a two-tailed hypothesis pair: $\mathbf{H}_{\mathbf{0}}: \mu_{\mathbf{Y}}=\mathbf{2 4}$ $\mathbf{H}_{1}: \mu_{\mathbf{Y}} \neq 24$

Set $\alpha=.001$ and find c.v. for t-test:

$$
\text { Mean }=21.9 \text { times/year; st.dev. }=26.0 ; N=2,014
$$

Estimate standard error and the t-test:
$t=\frac{\overline{\mathbf{Y}}-\mu_{\mathbf{Y}}}{\mathbf{S}_{\mathbf{Y}} / \sqrt{\mathbf{N}}}=$
Compare t-score to c.v., decide H_{0} :
What is probability of Type I error?
Conclusion: \qquad

