
Chapter 3

Making Statistical Inferences

3.1 Drawing Inferences About Populations 

3.2 Some Basic Probability Concepts

3.3 Chebycheff’s Inequality Theorem

3.4 The Normal Distribution

3.5 The Central Limit Theorem

3.6 Sample Point Estimates & Confidence 
Intervals



Inference - from Sample to Population

Inference: process of making generalizations (drawing 

conclusions) about a population’s characteristics from 

the evidence in one sample

To make valid inferences about 

the population, a representative 

sample should be drawn from the 

population, preferably using 

SIMPLE RANDOM SAMPLING:

• Every population member has equal chance of selection

• Probability of a case selected for the sample is 1/Npop

• Every combination of cases has same selection likelihood

We’ll treat the GSS as a s.r.s., altho it’s not



Probability Theory

In 1654 the Chevalier de Méré, a wealthy French gambler, 

asked mathematician Blaise Pascal if he should bet even 

money on getting one “double six” in 24 throws of two dice? 

Pascal’s answer was no, because the probability of winning is 

only .491. The Chevalier’s question started an famous 

exchange of seven letters between Pascal and Pierre de 

Fermat in which they developed many principles of the classical 

theory of probability.  

A Russian mathematician, 

Andrei Kolmogorov, in a 1933 

monograph, formulated the 

axiomatic approach which 

forms the foundation of the 

modern theory of probability.

Pascal                                                                        Fermat



Sample Spaces

A simple chance experiment is a well-defined act resulting in a 

single event; for example, rolling a die or cutting a card deck.  

This process is repeatable indefinitely under identical conditions, 

with outcomes assumed equiprobable (equally likely to occur).  

The theoretical method involves listing all possible 

outcomes.  For rolling one die: S = {1, 2, 3, 4, 5, 6}.  

For tossing two coins, S = {HH, HT, TH, TT}.  

To compute exact event probabilities, you 

must know an experiment’s sample space (S),

the set (collection) of all possible outcomes.

Probability of an event: Given sample space S with a set 

of E outcomes, a probability function assigns a real number 

p(Ei) to each event i in the sample space. 



Axioms & Theorems

Three fundamental probability axioms (general rules): 

1.  The probability assigned to event i must be a nonnegative number: 

p(Ei) > 0

2.  The probability of the sample space S (the collection of all possible 

outcomes) is 1:                                                                        p(S) = 1

3.  If two events can't happen at the same time, then the probability that 

either event occurs is the sum of their separate probabilities: 

p(E1) or p(E2) = p(E1) + p(E2)

Two important theorems (deductions) can be proved:

1.  The probability of the empty (“impossible”) event is 0:        p(E0) = 0

2.  The probability of any event must lie between 0 and 1, inclusive: 

1 > p(Ei) > 0



Calculate these theoretical probabilities:

For rolling a single die, calculate the theoretical probability 

of a “4”: _______________  Of a “7”: _______________ 

For tossing two coins, what is the probability of two 

heads: ________  Of one head and one tail: ________

If you cut a well-shuffled 52-card deck, 

what is the probability of getting the ten 

of diamonds? ____________

What is the probability of any 
diamond card? ____________

For a single die roll, calculate the theoretical probability of 

getting either a “1” or “2” or “3” or “4” or “5” or “6”: 

______________________________________________



Relative Frequency

FIFTY DICE ROLLS

4 10 6 7 5 10 4 6 5 6 

11 12 3 3 6 7 10 10 4 4 

7 8 8 7 7 4 10 11 3 8 6 

10 9 4 8 4 3 8 7 3 7 5 4 

11 9 5 2 5 8 5

An empirical alternative to the theoretical 

approach is to perform a chance experiment 

repeatedly and observe outcomes.  Suppose 

you roll two dice 50 times and find these 

sums of their face values.  What are the 

empirical probabilities of seven? four? ten? 

In the relative frequency method, probability is the 

proportion of times that an event occurs in a “large number” 

of repetitions:

N
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#

#
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p(E7) = _________

p(E4) = _________

p(E10) = ________

But, theoretically seven is the most probable sum (.167), while four 

and ten each have much lower probabilities (.083).  Maybe this 

experiment wasn’t repeated often enough to obtain precise estimates? 

Or were these two dice “loaded?”  What do we mean by “fair dice?”



Interpretation

Despite probability theory’s origin in gambling, relative 

frequency remains the primary interpretation in the social 

sciences.  If event rates are unknowable in advance, a 

“large N” of sample observations may be necessary to 

make accurate estimates of such empirical probabilities as:  

• What is the probability of graduating from college?

• How likely are annual incomes of $100,000 or more?

• Are men or women more prone to commit suicide?

Answers require survey or census data on these events.

Don’t confuse formal probability concepts with everyday 

talk, such as “Sarah Palin will probably be elected” or “I 

probably won’t pass tomorrow’s test.” Such statements 

express only a personal belief about the likelihood of a 

unique event, not an experiment repeated over and over.



Describing Populations

Population parameter: a descriptive characteristic of a 

population such as its mean, variance, or standard deviation

• Latin = sample statistic      

• Greek = population parameter

 

 

Name Sample 
Statistic 

Population 
Parameter 

 
Mean Y  


    (mu) 

 
Variance 2

Ys  

2

Y   

(sigma-squared) 

 
Standard  
Deviation Ys  Y  (sigma) 
 

Box 3.1 Parameters & Statistics



3.3 Chebycheff's Inequality Theorem

If you have the book, read this subsection (pp. 73-75) 

as background information on the normal distribution.

Because Cheby’s inequality is never calculated in 

research statistics, we’ll not spend time on it in lecture.



The Normal Distribution

Normal distribution: smooth, bell-shaped theoretical 

probability distribution for a continuous variable, 

generated by a formula:
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The population mean and variance determine a particular 

distribution’s location and shape. Thus, the family of 

normal distributions has an infinite number of curves.

where e is Euler’s constant (= 2.7182818….)



A Normal Distribution

with Mean = 30 and Variance = 49

VARIABLE Y
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Comparing Three Normal Curves

Suppose we graph three normally distributions, each 

with a mean of zero: (Y = 0)

What happens to the height and spread of these 

normal probability distributions if we increase the 

population’s variance?

Next graph superimposes these three normally 

distributed variables with these variances:

)( 2

Y

(1) = 0.5 

(2) = 1.0 

(3) = 1.5



Normal Curves with Different Variances
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Standardizing a Normal Curve

To standardize any normal distribution, change the Y 

scores to Z scores, whose mean = 0 and std. dev. = 1.  

Then use the known relation between the Z scores and 

probabilities associated with areas under the curve.

We previously learned how to 

convert a sample of Yi scores 

into standardized Zi scores: Y

i
i

s

YY
Z




Likewise, we can standardize 

a population of Yi scores:
Y

Yi
i

Y
Z






We can use a standardized Z score table (Appendix C) to 

solve all normal probability distribution problems, by finding 

the area(s) under specific segment(s) of the curve. 



The Standardized Normal Distribution

with Mean = 0 and Variance = 1

VARIABLE Y
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Area = Probability

The TOTAL AREA under a standardized normal probability 

distribution is assumed to have unit value; i.e., = 1.00

This area corresponds to probability p = 1.00 (certainty). 

Exactly half the total 

area lies on each side 

of the mean, (Y = 0)

(left side negative Z, 

right side positive Z)

Thus, each half of 

the normal curve 

corresponds to     

p = 0.500



Areas Between Z Scores

Using the tabled values in a table, we can find an area (a 

probability) under a standardized normal probability 

distribution that falls between two Z scores

EXAMPLE #1: What 

is area between Z = 0 

and Z = +1.67?

EXAMPLE #2: What is 

area from Z = +1.67 to 

Z = +?

Also use the Web-page version of Appendix C, which gives 

pairs of values for the areas (0 to Z) and (Z to ).

0     +1.67



Appendix C The Z Score Table

Z score Area from 0 to Z Area from Z to ∞

1.50 0.4332 0.0668

…

1.60 0.4452 0.0548

…

1.65 0.4505 0.0495

1.66 0.4515 0.0485

1.67 0.4525 0.0475

1.68 0.4535 0.0465

1.69 0.4545 0.0455

1.70 0.4554 0.0446

For Z = 1.67:

Col. 2 = __________

Col. 3 = __________

Sum   = __________

EX #3: What is area between 

Z = 0 and Z = -1.50?

EX #4: What is area from 

Z = -1.50 to Z = -?



Calculate some more Z score areas

EX #5: Find the area from Z = -1.65 to - _________

EX #6: Find the area from Z = +1.96 to  _________

EX #7: Find the area from Z = -2.33 to - _________

EX#8: Find the area from Z = 0 to –2.58          _________

Use the table to locate areas between or beyond two Z scores.

Called “two-tailed” Z scores because areas are in both tails:

EX #9: Find the area from Z = 0 to 1.96         _________

EX #10: Find the areas from Z =  1.96 to  _________

EX #11: Find the areas from Z =  2.58 to  _________



The Useful Central Limit Theorem

Central limit theorem: if all possible samples of size N 

are drawn from any population, with mean          andY

2

Yvariance       , then as N grows large, the

sampling distribution of these means approaches a 

normal curve, with mean Y and variance NY /2

The positive square root of a 

sampling distribution’s variance 

(i.e., its standard deviation), is 

called the standard error of the 

mean:

Y

YY

NN

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2



Take ALL Samples in a Small Population

Population (N = 

6, mean = 4.33):

Y
1

= 2

Y
2

= 2

Y
3

= 4

Y
4

= 4

Y
5

= 6

Y
6

= 8

Form all samples of size n = 2 & calculate means:

Y
1
+Y

2
= (2+2)/2 = 2

Graph this sampling 

distribution of 15 

sample means:
2   3   4   5   6   7

Y
1
+Y

3
= (2+4)/2 = 3

Y
1
+Y

4
= (2+4)/2 = 3 Y

1
+Y

5
= (2+6)/2 = 4

Y
1
+Y

6
= (2+8)/2 = 5 Y

2
+Y

3
= (2+4)/2 = 3

Y
2
+Y

4
= (2+4)/2 = 3 Y

2
+Y

5
= (2+6)/2 = 4

Y
2
+Y

6
= (2+8)/2 = 5 Y

3
+Y

4
= (4+4)/2 = 4

Y
3
+Y

5
= (4+6)/2 = 5 Y

3
+Y

6
= (4+8)/2 = 6

Y
4
+Y

5
= (4+6)/2 = 5

Y
4
+Y

6
= (4+8)/2 = 6

Y
5
+Y

6
= (6+8)/2 = 7

Calculate the mean of these 15 

sample means = ___________

Probability that a sample mean = 7?  

______________________



Take ALL Samples in a Large Population

A “thought experiment” suggests how a theoretical sampling 

distribution is built by: (a) forming every sample of size N in a 

large population, (b) then graphing all samples’ mean values.

Let’s take many samples of 1,000 

persons and calculate each 

sample’s mean years of education:

Population #1 mean = 13.22

#2 mean = 10.87

#100 mean = 13.06

#1000 mean = 11.59

A graph of this sampling 

distribution of sample 

means increasingly 

approaches a normal curve:

8 9 10 11 12 13 14 15 16 17 



Sampling Distribution for EDUC 

Start with a variable in a population with a known standard deviation: 

U.S. adult population of about 230,000,000 has a 

mean education = 13.43 years of schooling with a 

standard deviation = 3.00.

If we generate sampling 

distributions for samples 

of increasingly larger N, 

what do you expect will 

happen to the values of 

the mean and standard 

error for these sampling 

distributions, according 

to the Central Limit 

Theorem?



1. Let’s start with random samples of N = 100 observations.

CAUTION! BILLIONS of TRILLIONS of such small 

samples make up this sampling distribution!!!

What are the expected values for mean & standard error?

______

2. Now double N = 200.  What mean & standard error?


Y



Sampling distributions with differing Ns


N

Y

Y




______


Y

 
N

Y

Y





Y

 
N

Y

Y




3.  Use GSS N = 2,018.  What mean & standard error?

______ ______

______ ______



Rice University Virtual Lab in Statistics:

http://onlinestatbook.com/stat_sim/

Choose & click Sampling Distribution Simulation

(requires browser with Java 1.1 installed)

Read Instructions, Click ”Begin” button

We’ll work some examples in class, then you can try this 

demo for yourself.  See screen capture on next slide:

Online Sampling Distribution Demo





How Big is a “Large Sample?”

• To be applied, the central limit theorem requires a “large sample”

• But how big must a simple random sample be for us to call it “large”?

SSDA p. 81: “we cannot say precisely.”

• N < 30 is a “small sample”

• N > 100 is a “large sample”

• 30 < N < 100 is indeterminate



The Alpha Area

Alpha area ( area): area in tail of normal distribution 

that is cut off by a given Z

Because we could choose to designate  in 

either the negative or positive tail (or in both 

tails, by dividing  in half), we define an alpha 

area’s probability using the absolute value:

p(|Z|  |Z|) = 

Critical value (Z): the minimum value of Z necessary 

to designate an alpha area

The alpha area is also called the region of rejection 

when used to make a decision about a hypothesis test, 

as shown later in this chapter.



Find the critical values of Z that define six alpha areas:

 = 0.05 one-tailed

 = 0.01 one-tailed

 = 0.001 one-tailed

 = 0.05 two-tailed

Z = ________

Z = ________

Z = ________

 = 0.01 two-tailed

 = 0.001 two-tailed

Z = ________

Z = ________

Z = ________

These  and Z are the six conventional values used to test hypotheses.



Apply Z scores to a sampling distribution of EDUC where

067.043.13 
YY and 

What is the probability of selecting a GSS sample of N = 2,018 cases 

whose mean is equal to or greater than 13.60?

____________________



Y

Yi
i

Y
Z



 C: Area Beyond Z = 

_____________

What is the probability of drawing a sample with mean = 13.30 or less?

____________________



Y

Yi
i

Y
Z




C: Area Beyond Z = 

______________



Two Z Scores in a Sampling Distribution

Z = +2.54Z = -1.94

p = .0055p = .0262



Find Sample Means for an Alpha Area

What sample means divide  = .01 equally into both tails

of the EDUC sampling distribution?

1. Find half of alpha: /2 = (.01)/2 = .005

2. Look up the two values of 

the critical Z/2 scores:
In Table C the area beyond Z

( = .005), Z/2 =_________

3. Rearrange Z formula to 

isolate the sample mean on 

one side of the computation:





Y

Yi

i

Y
Z




iYYi YZ   ))( (

4. Compute the two      ___________________________________

critical mean values: ___________________________________



Point Estimate vs. Confidence Interval

Point estimate: sample statistic used to estimate a 

population parameter

In the 2008 GSS, mean family income = $58,683, the 

standard deviation = $46,616 and N = 1,774. Thus, the 

estimated standard error = $46,616/42.1 = $1,107. 

Confidence interval: a range of values around a 

point estimate, making possible a statement about 

the probability that the population parameter lies 

between upper and lower confidence limits

The 95% CI for U.S. annual income is from $56,513 

to $60,853, around a point estimate of $58,683.

Below you will learn below how use the sample mean 

and standard error to calculate the two CI limits.



An important corollary of the central limit theorem is that 

the sample mean is the best point estimate of the mean of 

the population from which the sample was drawn:

YY 

We can use the sampling distribution’s standard error to 

build a confidence interval around a point-estimated 

mean.  This interval is defined by the upper and lower 

limits of its range, with the point estimate at the midpoint.

Then use this estimated interval to state how confident 

you feel that the unknown population parameter (Y) 

falls inside the limits defining the interval.  

Confidence Intervals



UCL & LCL

A researcher sets a confidence interval by deciding how 

“confident” she wishes to be.  The trade-off is that 

obtaining greater confidence requires a broader interval.  

 Select an alpha (α) for desired confidence level

 Split alpha in half (α/2) & find the critical Z scores 

in the standardized normal table (+ and – values)

 Multiply each Zα/2 by the standard error, then 

separately add each result to sample mean

Upper confidence limit, UCL: ))(( 2/ Y
ZY 

Lower confidence limit, LCL: ))(( 2/ Y
ZY 

))(( 2/ Y
ZY 



Show how to calculate the 95% CI for 2008 GSS income

The standard error for annual income:  

For GSS sample N = 1,774 cases, sample mean: 683,58$Y

Upper confidence limit, 95% UCL: ))(( 2/ Y
ZY 

Lower confidence limit, 95% LCL: ))(( 2/ Y
ZY 

,1071$σ
Y


Upper confidence limit, 99% UCL: ))(( 2/ Y
ZY 

Lower confidence limit, 99% LCL: ))(( 2/ Y
ZY 

Now compute the 99% CI:



,640 
Y

andY 

A: The 95% confidence interval:  = 0.05, so Z = 1.96

)6)(96.1(40))(( 2/ 
Y

ZY 

UCL = _________________

LCL = _________________

B: The 99% confidence interval;  = 0.01, so Z = 2.58

)6)(58.2(40))(( 2/ 
Y

ZY 

UCL = _________________

LCL = _________________

Thus, to obtain more confidence requires a wider interval.

For                                   find the UCL & LCL for these two CIs:



Interpretating a CI

A CI interval indicates how much uncertainty we have about a 

sample estimate of the true population mean. The wider we 

choose an interval (e.g., 99% CI), the more confident we are.  

CAUTION: A 95% CI does not mean that an interval 

has a 0.95 probability of containing the true mean.   

Any interval estimated from a sample either contains 

the true mean or it does not – but you can’t be certain!

Correct interpretation: A confidence interval is not a probability 

statement about a single sample, but is based on the idea of 

repeated sampling. If all samples of the same size (N) were drawn 

from a population, and confidence intervals calculated around every 

sample mean, then 95% (or 99%) of intervals would be expected to 

contain the population mean (but 5% or 1% of intervals would not).

Just say: “I’m 95% (or 99%) confident that the true population 

mean falls between the lower and upper confidence limits.”



Calculate another CI example

16.350 
Y

andY 

)16.3)(96.1(50))(( 2/ 
Y

ZY 

LCL = ___________         UCL = _____________

)16.3)(58.2(50))(( 2/ 
Y

ZY 

LCL = ___________         UCL = _____________

INTERPRETATION: For all samples of the same size (N), if 

confidence intervals were constructed around each sample 

mean, 95% (or 99%) of those intervals would include the 

population mean somewhere between upper and lower limits.  

Thus, we can be 95% confident that the population mean lies 

between 43.8 and 56.2. And we can have 99% confidence 

that the parameter falls into the interval from 41.8 to 58.2.

If                                           find UCL & LCL for two CIs:



A Graphic View of CIs

μ
Y

1Y

2Y

3Y

4Y

5Y

6Y

7Y

8Y

9Y

10Y

The confidence intervals 

constructed around 95% 

(or 99%) of all sample 

means of size N from a 

population can be 

expected to include the 

true population mean 

(dashed line) within the 

lower and upper limits.

But, in 5% (or 1%) of the 

samples, the population 

parameter would fall 

outside their confidence 

intervals.



Online CI Demo

Rice University Virtual Lab in Statistics:

http://onlinestatbook.com/stat_sim/

Choose & click Confidence Intervals

(requires browser with Java 1.1 installed)

Read Instructions, Click ”Begin” button

We’ll work some examples in class, then you can try this 

demo for yourself.  See screen capture on next slide:





What is a “Margin of Error”?

Opinion pollsters report a “margin of error” with their point estimates:

Using your knowledge of basic social statistics, you can calculate --

(1) the standard deviation for the sample point-estimate of a proportion:

4996.02496.0)52.0)(48.0(01  ppsp

(2) Use that sample value to estimate the sampling distribution’s standard error:

(3) Then find the upper and lower 95% confidence limits:

0129.073.38/4996.01500/4996.0/  Nspp

Thus, a “margin of error” is just the product of the standard error 

times the critical value of Z/2 for the 95% confidence interval!

505.0025.48.0)0129.0)(96.1(48.0))((

455.0025.48.0)0129.0)(96.1(48.0))((

2/1

2/1





p

p

ZpUCL

ZpLCL









The Gallup Poll’s final survey of 2010, found 

that 48% of the 1,500 respondents said they 

approved how Pres. Obama was doing his job, 

with a “margin of sampling error” = ±3 per cent.


